Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study evaluated the antifungal, physical, and mechanical properties of tissue conditioner incorporated with different amounts of zinc oxide nanoparticles (ZnOnps) at different storage times (0, 7, and 14 days). Specimens of 0, 5, 10, 15 wt% ZnOnps, or 15 wt% nystatin incorporated into tissue conditioner were fabricated (control, 5Zn, 10Zn, 15Zn, and Nys). The direct contact test (n=6) was performed to evaluate the antifungal effect against C. albicans suspension. The penetration depth (n=6) and tensile bond strength (n=8) were evaluated following ISO 13139. The 15Zn significantly reduced C. albicans cell number compared with control at all storage times (p<0.001). The penetration depths and tensile bond strengths of the 5Zn, 10Zn, 15Zn, and Nys were not significantly different compared with control at all storage times (p>0.05). In conclusion, the 15Zn provides antifungal effect up to 14 days without adverse effects on penetration depth and tensile bond strength.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.4012/dmj.2020-095 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!