The family of GABA receptors is an important drug target group in the treatment of sleep disorders, anxiety, epileptic seizures, and many others. The most frequent GABA receptor subtype is composed of two -, two -, and one 2-subunit, whereas the nature of the -subunit critically determines the properties of the benzodiazepine binding site of those receptors. Nearly all of the clinically relevant drugs target all GABA receptor subtypes equally. In the past years, however, drug development research has focused on studying 5-containing GABA receptors. Beyond the central nervous system, 5-containing GABA receptors in airway smooth muscles are considered as an emerging target for bronchial asthma. Here, we investigated a novel compound derived from the previously described imidazobenzodiazepine SH-053-2'F-R-CH3 (SH53d-ester). Although SH53d-ester is only moderately selective for 5-subunit-containing GABA receptors, the derivative SH53d-acid shows superior (>40-fold) affinity selectivity and is a positive modulator. Using two-electrode voltage clamp electrophysiology in oocytes and radioligand displacement assays with human embryonic kidney 293 cells, we demonstrated that an acid group as substituent on the imidazobenzodiazepine scaffold leads to large improvements of functional and binding selectivity for 532 over other x32 GABA receptors. Atom level structural studies provide hypotheses for the improved affinity to this receptor subtype. Mutational analysis confirmed the hypotheses, indicating that loop C of the GABA receptor -subunit is the dominant molecular determinant of drug selectivity. Thus, we characterize a promising novel 5-subunit-selective drug candidate. SIGNIFICANCE STATEMENT: In the current study we present the detailed pharmacological characterization of a novel compound derived from the previously described imidazobenzodiazepine SH-053-2'F-R-CH3. We describe its superior (>40-fold) affinity selectivity for 5-containing GABA receptors and show atom-level structure predictions to provide hypotheses for the improved affinity to this receptor subtype. Mutational analysis confirmed the hypotheses, indicating that loop C of the GABA receptor -subunit is the dominant molecular determinant of drug selectivity.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1124/molpharm.120.000067 | DOI Listing |
Sci Rep
January 2025
Beijing Key Laboratory of Neuropsychopharmacology, State Key Laboratory of Toxicology and Medical Countermeasures, Beijing Institute of Pharmacology and Toxicology, Taiping Road 27, Beijing, 100850, China.
Respiratory depression is a side effect of anesthetics. Treatment with specific antagonists or respiratory stimulants can reverse respiratory depression caused by anesthetics; however, they also interfere with the sedative effects of anesthetics. Previous studies have suggested that tandospirone may ameliorate respiratory depression without affecting the sedative effects of anesthetics.
View Article and Find Full Text PDFNeuromolecular Med
December 2024
Key Laboratory of Physical Fitness and Exercise Rehabilitation of Hunan Province, College of Physical Education, Hunan Normal University, Changsha, 410012, China.
Alzheimer's disease (AD) is the most common neurodegenerative disorder. The neuropathology of AD appears in the hippocampus. The purpose of this work was to reveal key differentially expressed genes (DEGs) in the hippocampus of AD patients and healthy individuals.
View Article and Find Full Text PDFNeurochem Res
January 2025
Laboratory of Chinese Medicine Brain Science, Innovative Institute of Chinese Medicine and Pharmacy, Shandong University of Traditional Chinese Medicine, Jinan, 250355, China.
Maintaining GABAergic inhibition within physiological limits in the medial prefrontal cortex (mPFC) is critical for working memory. While synaptic GABAR typically mediate the primary component of mPFC inhibition, the role of extrasynaptic δ-GABAR in working memory remains unclear. To investigate this, we used fiber photometry to examine the effects of δ-GABAR in freely moving mice.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
The Neuroscience Institute at JFK Medical Center, Edison, NJ, USA; Hackensack Meridian School of Medicine, Nutley, NJ, USA.
Background: Disease-associated microglia (DAM), which cluster around Aβ plaques, represent a significant pathological hallmark of Alzheimer's disease (AD) and play a complex role in influencing neuroinflammation, mediating synapse loss, and participating in the phagocytic clearance of Aβ. Nonetheless, the precise mechanisms by which microglial activation extends beyond the traditional M1 and M2 classifications, encompassing a diverse spectrum of states, especially for DAM, closely intertwined with physiological and pathological conditions under Alzheimer's circumstances remain elusive.
Method: Here, we first combined biochemical techniques and bioinformatic analysis to test and quantify the expression of GABAR1 in both human and mouse AD models.
Alzheimers Dement
December 2024
San Francisco VA Medical Center, University of California San Francisco, San Francisco, CA, USA.
Background: Effective disease-modifying regimens for Alzheimer's Disease (AD) remain lacking due to insufficient understanding of its pathogenic drivers. It was shown previously that upregulation of the calcium-sensing receptor (CaSR), an excitatory family C GPCR, induces neurodegeneration by interfering with the inhibitory γ-aminobutyric acid (GABA) signaling following acute brain injuries (Ann_Clin_Transl_Neurol, 1:851-66). Herein, we determined whether CaSR overexpression is causally associated with the AD.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!