Petroleum sludge has been reported as noteworthy hazardous solid waste generated from industrial activities of petroleum sector. Environment friendly and economically sound treatment of petroleum sludge has attracted global attention worldwide and has become a thrust area of research. Petroleum sludge bioremediation is gaining interest of researchers globally to clean pollutants from soil ecosystems. To date of submission of the work there is no literature available reporting comparing five approaches for remediation of agricultural soil polluted with petroleum sludge employing hydrocarbon utilizing bacterial consortium (HUBC). Further studies on toxicity were performed through pot experiments using Vigna radiata. The aim of this research work was to compare capability of five approaches for remediating petroleum sludge polluted agricultural soil by employing soil microcosms. Best results were obtained when simultaneous application of HUBC and nutrients was performed in microcosm. Highest decrease (93.14 ± 1.75%) of petroleum sludge with sufficient count of hydrocarbon utilizers and decreased nutrients in 42 days was reported. Quality improvement of petroleum sludge contaminated agricultural soil after its bioremediation was performed by pot experiments by checking germination of V. radiata seeds. 85.71% germination of seeds in 5 days was noted for treated soil. Thus, HUBC can be applied as a bioremediating consortium to reclaim petroleum sludge polluted soil.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.142934DOI Listing

Publication Analysis

Top Keywords

petroleum sludge
36
sludge polluted
12
agricultural soil
12
petroleum
10
soil
8
polluted soil
8
bacterial consortium
8
sludge
8
performed pot
8
pot experiments
8

Similar Publications

Microbial manganese redox cycling drives co-removal of nitrate and ammonium.

J Environ Manage

January 2025

State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China. Electronic address:

Manganese (Mn), abundant in the Earth's crust, can act as an oxidant or a reductant for diverse nitrogen biotransformation processes. However, the functional microorganisms and their metabolic pathways, as well as interactions, remain largely elusive. Here, a microbial consortium was enriched from a mixture of freshwater sediments and activated sludge by feeding ammonium, nitrate and Mn(II), which established manganese-driven co-removal of nitrate and ammonium with removal rates of 5.

View Article and Find Full Text PDF

Current published models for nitrous oxide (NO) emission in membrane aerated biofilm reactors (MABR) have several simplifications that are not representative of full-scale systems. This study developed an improved MABR NO model that captured commonly overlooked phenomena such as back diffusion of generated NO into MABR lumen gas and the recirculation of the NO laden lumen gas for tank mixing and biofilm thickness control. The improved model was validated with measured NO concentrations in the lumen gas phase and bulk mixed liquor in a full-scale hybrid MABR facility.

View Article and Find Full Text PDF

This study addresses the challenge of reducing "net" toxic pollutant discharge, specifically dibenzo-p-dioxins and dibenzofurans (PCDD/Fs), while minimizing the energy consumption and costs associated with detoxification. Our research focuses on reintroducing fly ash and scrubber sludge (ASR) into a hazardous waste thermal treatment system equipped with gasification-intense low oxygen dilution (GASMILD) and an advanced air pollution control system (APCS). This approach yielded a remarkable PCDD/F removal efficiency exceeding 99.

View Article and Find Full Text PDF

This study provides a detailed approach to evaluating water quality in the Haridwar district, Uttarakhand, India, by integrating physicochemical and microbiological investigations. It employs multivariate analysis and applies water quality and trophic state indices to evaluate the current state of the water and identify potential sources of contamination. The results from the correlation matrix highlight the dynamic interactions between different water quality parameters.

View Article and Find Full Text PDF

Proper waste management and sustainable energy production are crucial for human development. For this purpose, this study evaluates the impact of blending percentage on energy recovery potential and environmental benefits of co-combustion of wastewater sludge and Brazilian low-rank coal. The sludge and coal were characterised in terms of their potential as fuel and co-combustion tests were carried out in a pilot-scale bubbling fluidised bed focused on the influence of the percentage of sludge mixture on the behaviour of co-combustion with coal in terms of flue gas composition and fluidised bed temperature stability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!