Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Drug-induced liver toxicity remains a major cause of drug withdrawal from animal testing and human clinical trials. A functional liver culture model corresponding to the liver is urgently required; however, in previous liver models, it has proven difficult to stably maintain multiple liver functions. Previously reported fluid-based systems have some advantages for hepatocyte culture, but have insufficient liver-specific functions because they simply involve moving conventional hepatocyte cultures from a dish into a fluid-based system. Importantly, these cultures have no liver tissue-specific structures that construct liver-specific cellular polarities, such as apical, basolateral, and basal faces. In this study, we developed a fluid-based system for our liver tissue culture models. The liver tissues that were constructed in our originally designed fluid-based systems represent a tissue culture model for studying hepatic functions. Together, our findings show that by mimicking the structure of the liver in the body, our system effectively maintains multiple liver-specific functions. Impact statement A functional liver culture model corresponding to the liver is urgently required; however, in previous liver models, it has proven difficult to stably maintain multiple liver functions. In this study, we developed a fluid-based system for our liver tissue culture models. The liver tissues that were constructed in our originally designed fluid-based systems represent a tissue culture model for studying hepatic functions. Together, our findings show that by mimicking the structure of the liver in the body, our system effectively maintains multiple liver-specific functions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1089/ten.TEA.2020.0226 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!