Beyond the State of the Art: Novel Approaches for Thermal and Electrical Transport in Nanoscale Devices.

Entropy (Basel)

Nano-Bio Spectroscopy Group and European Theoretical Spectroscopy Facility (ETSF), Universidad del Pais Vasco CFM CSIC-UPV/EHU-MPC and DIPC, Av. Tolosa 72, 20018 San Sebastian, Spain.

Published: August 2019

Almost any interaction between two physical entities can be described through the transfer of either charge, spin, momentum, or energy. Therefore, any theory able to describe these transport phenomena can shed light on a variety of physical, chemical, and biological effects, enriching our understanding of complex, yet fundamental, natural processes, e.g., catalysis or photosynthesis. In this review, we will discuss the standard workhorses for transport in nanoscale devices, namely Boltzmann's equation and Landauer's approach. We will emphasize their strengths, but also analyze their limits, proposing theories and models useful to go beyond the state of the art in the investigation of transport in nanoscale devices.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515281PMC
http://dx.doi.org/10.3390/e21080752DOI Listing

Publication Analysis

Top Keywords

transport nanoscale
12
nanoscale devices
12
state art
8
art novel
4
novel approaches
4
approaches thermal
4
thermal electrical
4
transport
4
electrical transport
4
devices interaction
4

Similar Publications

Influence of pyridinic nitrogen on tautomeric shifts and charge transport in single molecule keto enol equilibria.

Sci Rep

January 2025

Qatar Environment & Energy Research institute (QEERI), Hamad Bin Khalifa University (HBKU), Qatar Foundation, P.O. Box 34110, Doha, Qatar.

Keto-enol tautomerism in organic molecules presents a potential for modulating the charge transport at the nanoscale. The reduction of the isomerization barrier and favoring the highly conductive enol form are the main challenges towards practical implementation of this phenomenon. Using density functional theory calculations, we have demonstrated that pyridinic nitrogen in biphenyl molecules with keto-enol tautomerism can successfully make the conductive enol form energetically more favorable.

View Article and Find Full Text PDF

Nano zero-valent iron (nZVI) is widely used for polychlorinated biphenyl (PBDE) remediation due to its cost-effectiveness and strong reduction capacity. However, its practical application is limited by poor stability, mobility, and antioxidant performance, as well as high reactivity that leads to side reactions and activity loss. To overcome these challenges, a poly(styrene)-encapsulated nZVI (PS-nZVI) core-shell structure was developed using dispersion polymerization.

View Article and Find Full Text PDF

Phonon dynamics and transport determine how heat is utilized and dissipated in materials. In 2D systems for optoelectronics and thermoelectrics, the impact of nanoscale material structure on phonon propagation is central to controlling thermal conduction. Here, we directly observe in-plane coherent acoustic phonon propagation in black phosphorus (BP) using ultrafast electron microscopy.

View Article and Find Full Text PDF

Semiconducting transition metal dichalcogenides (TMDs) have attracted significant attention for their potential to develop high-performance, energy-efficient, and nanoscale electronic devices. Despite notable advancements in scaling down the gate and channel length of TMD field-effect transistors (FETs), the fabrication of sub-30 nm narrow channels and devices with atomic-scale edge control still poses challenges. Here, we demonstrate a crystallography-controlled nanostructuring technique to fabricate ultranarrow tungsten disulfide (WS) nanoribbons as small as sub-10 nm in width.

View Article and Find Full Text PDF

Nano-Metal-Organic Frameworks Isolated in Mesoporous Structures.

Adv Mater

January 2025

School of Chemistry and Chemical Engineering, Testing Center, Yangzhou University, Yangzhou, 225009, P. R. China.

As an alternative to bulk counterparts, metal-organic framework (MOF) nanoparticles isolated within conductive mesoporous carbon matrices are of increasing interest for electrochemical applications. Although promising, a "clean" carbon surface is generally associated with poor compatibility and weak interactions with metal/ligand precursors, which leads to the growth of MOFs with inhomogeneous particle sizes on outer pore walls. Here, a general methodology for in situ synthesis of eight nanoMOF composites within mesochannels with high dispersity and stability are reported.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!