This paper presents a discrete particle swarm optimization (DPSO) algorithm with heterogeneous (non-uniform) parameter values for solving the dynamic traveling salesman problem (DTSP). The DTSP can be modeled as a sequence of static sub-problems, each of which is an instance of the TSP. In the proposed DPSO algorithm, the information gathered while solving a sub-problem is retained in the form of a pheromone matrix and used by the algorithm while solving the next sub-problem. We present a method for automatically setting the values of the key DPSO parameters (except for the parameters directly related to the computation time and size of a problem).We show that the diversity of parameters values has a positive effect on the quality of the generated results. Furthermore, the population in the proposed algorithm has a higher level of entropy. We compare the performance of the proposed heterogeneous DPSO with two ant colony optimization (ACO) algorithms. The proposed algorithm outperforms the base DPSO and is competitive with the ACO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515267 | PMC |
http://dx.doi.org/10.3390/e21080738 | DOI Listing |
Sci Data
January 2025
School of Medicine, Anhui University of Science and Technology, Huainan, 232001, China.
Ultrasound is a primary diagnostic tool commonly used to evaluate internal body structures, including organs, blood vessels, the musculoskeletal system, and fetal development. Due to challenges such as operator dependence, noise, limited field of view, difficulty in imaging through bone and air, and variability across different systems, diagnosing abnormalities in ultrasound images is particularly challenging for less experienced clinicians. The development of artificial intelligence (AI) technology could assist in the diagnosis of ultrasound images.
View Article and Find Full Text PDFNeuroimage
January 2025
Department of Electrical and Electronic Engineering, Yonsei University, Seoul, Republic of Korea. Electronic address:
Magnetic resonance electrical properties tomography can extract the electrical properties of in-vivo tissue. To estimate tissue electrical properties, various reconstruction algorithms have been proposed. However, physics-based reconstructions are prone to various artifacts such as noise amplification and boundary artifact.
View Article and Find Full Text PDFStat Med
February 2025
U.S. Food and Drug Administration, Silver Spring, Maryland.
The recent U.S. Food and Drug Administration guidance on complex innovative trial designs acknowledges the use of Bayesian strategies to incorporate historical information based on clinical expertise and data similarity.
View Article and Find Full Text PDFSensors (Basel)
January 2025
State Grid Zaozhuang Power Supply Company, Zaozhuang 277899, China.
Within the framework of 6G networks, the rapid proliferation of Internet of Things (IoT) devices, coupled with their decentralized and heterogeneous characteristics, presents substantial security challenges. Conventional centralized systems face significant challenges in effectively managing the diverse range of IoT devices, and they are inadequate in addressing the requirements for reduced latency and the efficient processing and analysis of large-scale data. To tackle these challenges, this paper introduces a zero-trust access control framework that integrates blockchain technology with inner-product encryption.
View Article and Find Full Text PDFSensors (Basel)
January 2025
Department of Electrical and Computer Engineering, Concordia University, Montreal, QC H3G 1M8, Canada.
Deep learning (DL)-based Human Activity Recognition (HAR) using wearable inertial measurement unit (IMU) sensors can revolutionize continuous health monitoring and early disease prediction. However, most DL HAR models are untested in their robustness to real-world variability, as they are trained on limited lab-controlled data. In this study, we isolated and analyzed the effects of the subject, device, position, and orientation variabilities on DL HAR models using the HARVAR and REALDISP datasets.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!