The multivariate analysis of coupling pathways within physiological (sub)systems focusing on identifying healthy and diseased conditions. In this study, we investigated a part of the central-autonomic-network (CAN) in 17 patients suffering from schizophrenia (SZO) compared to 17 age-gender matched healthy controls (CON) applying linear and nonlinear causal coupling approaches (normalized short time partial directed coherence, multivariate transfer entropy). Therefore, from all subjects continuous heart rate (successive beat-to-beat intervals, BBI), synchronized maximum successive systolic blood pressure amplitudes (SYS), synchronized calibrated respiratory inductive plethysmography signal (respiratory frequency, RESP), and the power P of frontal EEG activity were investigated for 15 min under resting conditions. The CAN revealed a bidirectional coupling structure, with central driving towards blood pressure (SYS), and respiratory driving towards P. The central-cardiac, central-vascular, and central-respiratory couplings are more dominated by linear regulatory mechanisms than nonlinear ones. The CAN showed significantly weaker nonlinear central-cardiovascular and central-cardiorespiratory coupling pathways, and significantly stronger linear central influence on the vascular system, and on the other hand significantly stronger linear respiratory and cardiac influences on central activity in SZO compared to CON, and thus, providing better understanding of the interrelationship of central and autonomic regulatory mechanisms in schizophrenia might be useful as a biomarker of this disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515262PMC
http://dx.doi.org/10.3390/e21080733DOI Listing

Publication Analysis

Top Keywords

coupling pathways
12
causal coupling
8
central-autonomic-network patients
8
patients suffering
8
suffering schizophrenia
8
szo compared
8
blood pressure
8
regulatory mechanisms
8
stronger linear
8
coupling
5

Similar Publications

The electroreduction of nitrate has emerged as a promising global strategy for water purification in the face of harmful nitrate in wastewater. However, the usually low concentration of nitrate in wastewater poses a great challenge to this process, thus necessitating more in-depth studies to optimize its efficiency. This perspective article briefly explores the various electrochemical pathways of nitrate reduction, including the conversion of nitrate to ammonia, the conversion of nitrate to dinitrogen, and the C-N coupled reduction process.

View Article and Find Full Text PDF

Recently, cobalt-based oxides have received considerable attention as an alternative to expensive and scarce iridium for catalyzing the oxygen evolution reaction (OER) under acidic conditions. Although the reported materials demonstrate promising durability, they are not entirely intact, calling for fundamental research efforts to understand the processes governing the degradation of such catalysts. To this end, this work studies the dissolution mechanism of a model CoO porous catalyst under different electrochemical conditions using online inductively coupled plasma mass spectrometry (online ICP-MS), identical location scanning transmission electron microscopy (IL-STEM), and differential electrochemical mass spectrometry (DEMS).

View Article and Find Full Text PDF

We propose a scheme to achieve nonreciprocal unconventional magnon blockade (UMB) via the Barnett effect in a spinning ferrimagnetic yttrium-iron-garnet sphere coupled to a microwave cavity that interacts with a parametric amplifier. We show that, with a strong cavity-magnon coupling regime, giant nonreciprocal UMB can emerge by appropriately choosing two sets of parameters in this system, i.e.

View Article and Find Full Text PDF

Reductive acetogenesis is a dominant process in the ruminant hindgut.

Microbiome

January 2025

Key Laboratory for Agro-Ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, Chinese Academy of Sciences, Changsha, Hunan, China.

Background: The microbes residing in ruminant gastrointestinal tracts play a crucial role in converting plant biomass to volatile fatty acids, which serve as the primary energy source for ruminants. This gastrointestinal tract comprises a foregut (rumen) and hindgut (cecum and colon), which differ in structures and functions, particularly with respect to feed digestion and fermentation. While the rumen microbiome has been extensively studied, the cecal microbiome remains much less investigated and understood, especially concerning the assembling microbial communities and overriding pathways of hydrogen metabolism.

View Article and Find Full Text PDF

The photoautotrophic nature of cyanobacteria, coupled with their fast growth and relative ease of genetic manipulation, makes these microorganisms very promising factories for the sustainable production of bio-products from atmospheric carbon dioxide. However, both in nature and in cultivation, cyanobacteria go through different abiotic stresses such as high light (HL) stress, heavy metal stress, nutrient limitation, heat stress, salt stress, oxidative stress, and alcohol stress. In recent years, significant improvement has been made in identifying the stress-responsive genes and the linked pathways in cyanobacteria and developing genome editing tools for their manipulation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!