Thermodynamic aspects of the theory of nucleation are commonly considered employing Gibbs' theory of interfacial phenomena and its generalizations. Utilizing Gibbs' theory, the bulk parameters of the critical clusters governing nucleation can be uniquely determined for any metastable state of the ambient phase. As a rule, they turn out in such treatment to be widely similar to the properties of the newly-evolving macroscopic phases. Consequently, the major tool to resolve problems concerning the accuracy of theoretical predictions of nucleation rates and related characteristics of the nucleation process consists of an approach with the introduction of the size or curvature dependence of the surface tension. In the description of crystallization, this quantity has been expressed frequently via changes of entropy (or enthalpy) in crystallization, i.e., via the latent heat of melting or crystallization. Such a correlation between the capillarity phenomena and entropy changes was originally advanced by Stefan considering condensation and evaporation. It is known in the application to crystal nucleation as the Skapski-Turnbull relation. This relation, by mentioned reasons more correctly denoted as the Stefan-Skapski-Turnbull rule, was expanded by some of us quite recently to the description of the surface tension not only for phase equilibrium at planar interfaces, but to the description of the surface tension of critical clusters and its size or curvature dependence. This dependence is frequently expressed by a relation derived by Tolman. As shown by us, the Tolman equation can be employed for the description of the surface tension not only for condensation and boiling in one-component systems caused by variations of pressure (analyzed by Gibbs and Tolman), but generally also for phase formation caused by variations of temperature. Beyond this particular application, it can be utilized for multi-component systems provided the composition of the ambient phase is kept constant and variations of either pressure or temperature do not result in variations of the composition of the critical clusters. The latter requirement is one of the basic assumptions of classical nucleation theory. For this reason, it is only natural to use it also for the specification of the size dependence of the surface tension. Our method, relying on the Stefan-Skapski-Turnbull rule, allows one to determine the dependence of the surface tension on pressure and temperature or, alternatively, the Tolman parameter in his equation. In the present paper, we expand this approach and compare it with alternative methods of the description of the size-dependence of the surface tension and, as far as it is possible to use the Tolman equation, of the specification of the Tolman parameter. Applying these ideas to condensation and boiling, we derive a relation for the curvature dependence of the surface tension covering the whole range of metastable initial states from the binodal curve to the spinodal curve.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7515167 | PMC |
http://dx.doi.org/10.3390/e21070670 | DOI Listing |
Nanomaterials (Basel)
January 2025
State Key Laboratory of High-Performance Civil Engineering Materials, Jiangsu Sobute New Materials Co., Ltd., Nanjing 210008, China.
A novel class of SiO aerogel-based resin composite with a self-formed foamy structure and an extremely low thermal conductivity, as well as excellent fire resistance, was fabricated via a room temperature and atmospheric pressure route. The self-formed foamy structure was achieved by utilizing SiO aerogel particles not only as a thermal insulative functional additive filler but also as nano-sized solid particles in a Picking emulsion system, adjusting the surface tension as a stabilizer at the interface between the two immiscible phases (liquid and air in this case). The results of foamy structure analyses via scanning electron microscopy, micro-CT, and N adsorption-desorption isotherms validate the successful generation of a micro-scale porous structure with the enhancement of the aerogel nano-scale solid particles at the wall as a stabilizer.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Aeronautical Engineering, Shandong Engineering Research Center of Aeronautical Materials and Devices, Shandong University of Aeronautics, Binzhou 256600, China.
Spray cooling, of which the essence is droplet impacting, is an efficient thermal management technique for dense electronic components in unmanned aerial vehicles (UAVs). Nanofluids are pointed as promising cooling dispersions. Since the nanofluids are unstable, a dispersant could be added to the fluid.
View Article and Find Full Text PDFGraphene aerogels with high surface areas, ultra-low densities, and thermal conductivities have been attracted a lot of attention in recent years. However, considerable difference in their deformation behavior and mechanical properties lead to their poor performance. The problem can be solved by preparing graphene aerogel of given morphology and by control the properties through the special structure of graphene cells.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Chemical Engineering, Quchan Branch, Islamic Azad University, Quchan, Iran.
An interface can be delicately designed using interactions between nanoparticles and surfactants by controlling surface properties such as activity and charge equilibrium. This study seeks to provide insights into how surfactant concentration impacts the stability and dynamics of nanoparticle-surfactant interfaces, with potential applications in material science and interface engineering. This study investigates the interactions between Graphene Function (Gr, Graphene function in this text refers to functionalizing the graphene sheets with -COOH groups via acidic reactions.
View Article and Find Full Text PDFBiofilm
June 2025
DTU Bioengineering, Technical University of Denmark, 2800, Kongens Lyngby, Denmark.
Surfactin is a biosurfactant produced by many strains with a wide variety of functions from lowering surface tension to allowing motility of bacterial swarms, acting as a signaling molecule, and even exhibiting antimicrobial activities. However, the impact of surfactin during biofilm formation has been debated with variable findings between studies depending on the experimental conditions. B.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!