This study investigates the solitary wave solutions of the nonlinear fractional Jimbo-Miwa (JM) equation by using the conformable fractional derivative and some other distinct analytical techniques. The JM equation describes the certain interesting (3+1)-dimensional waves in physics. Moreover, it is considered as a second equation of the famous Painlev'e hierarchy of integrable systems. The fractional conformable derivatives properties were employed to convert it into an ordinary differential equation with an integer order to obtain many novel exact solutions of this model. The conformable fractional derivative is equivalent to the ordinary derivative for the functions that has continuous derivatives up to some desired order over some domain (smooth functions). The obtained solutions for each technique were characterized and compared to illustrate the similarities and differences between them. Profound solutions were concluded to be powerful, easy and effective on the nonlinear partial differential equation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514887 | PMC |
http://dx.doi.org/10.3390/e21040397 | DOI Listing |
Sci Rep
January 2025
Laboratoire d'Océanographie Physique et Spatiale (LOPS), IUEM, CNRS, Ifremer, IRD, University of Brest, 29280, Plouzané, France.
Internal solitary waves (ISWs) propagate in stratified waters, enhancing diapycnal mixing, sediment and mass transport on shelves. They have typical wavelengths of hundreds of meters and tens of minutes periods, requiring high resolution and high frequency measurements for their sampling. But such in-situ measurements are scarce and ISWs remain largely unpredictable.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics, Faculty of Science, University of Tabuk, P.O. Box 741, 71491, Tabuk, Saudi Arabia.
In this study, the -model expansion method is showed to be useful for finding solitary wave solutions to the Klein-Gordon (KG) equation. We develop a variety of solutions, including Jacobi elliptic functions, hyperbolic forms, and trigonometric forms, so greatly enhancing the range of exact solutions attainable. The 2D, 3D, and contour plots clearly show different types of solitary waves, like bright, dark, singular, and periodic solitons.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Mathematics and Statistics, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia.
In applied research, fractional calculus plays an important role for comprehending a wide range of intricate physical phenomena. One of the Klein-Gordon model's peculiar case yields the Phi-four equation. Additionally, throughout the past few decades it has been utilized to explain the kink and anti-kink solitary waveform contacts that occur in biological systems and in the field of nuclear mechanics.
View Article and Find Full Text PDFPLoS One
January 2025
Department of Mathematics, Bangladesh University of Engineering and Technology, Dhaka, Bangladesh.
The (3+1)-dimensional mKdV-ZK model is an important framework for studying the dynamic behavior of waves in mathematical physics. The goal of this study is to look into more generic travelling wave solutions (TWSs) for the generalized ion-acoustic scenario in three dimensions. These solutions exhibit a combination of rational, trigonometric, hyperbolic, and exponential solutions that are concurrently generated by the new auxiliary equation and the unified techniques.
View Article and Find Full Text PDFJ Hypertens
February 2025
Department of Medicine.
Background: Patients with solitary functioning kidney appear to be exposed to an increased cardiovascular risk. This study aimed to evaluate the impact of peripheral and central blood pressure on subclinical cardiovascular organ damage in a sample of children and adolescents with solitary functioning kidney.
Methods: Carotid ultrasonography was performed to measure the carotid intima-media thickness (cIMT) and the carotid distensibility coefficient.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!