In this article, the entropy generation characteristics of a laminar unsteady MHD boundary layer flow are analysed numerically for an incompressible, electrically conducting and dissipative fluid. The Ohmic heating and energy dissipation effects are added to the energy equation. The modelled dimensional transport equations are altered into dimensionless self-similar partial differential equations (PDEs) through suitable transformations. The reduced momentum and energy equations are then worked out numerically by employing a new hybrid method called the Gear-Generalized Differential Quadrature Method (GGDQM). The obtained numerical results are incorporated in the calculation of the Bejan number and dimensionless entropy generation. Quantities of physical interest, like velocity, temperature, shear stress and heat transfer rate, are illustrated graphically as well as in tabular form. Impacts of involved parameters are examined and discussed thoroughly in this investigation. Exact and GGDQM solutions are compared for special cases of initial unsteady flow and final steady state flow. Furthermore, a good harmony is observed between the results of GGDQM and those given previously by the Spectral Relaxation Method (SRM), Spectral Quasilinearization Method (SQLM) and Spectral Perturbation Method (SPM).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514721PMC
http://dx.doi.org/10.3390/e21030240DOI Listing

Publication Analysis

Top Keywords

unsteady mhd
8
ohmic heating
8
gear-generalized differential
8
differential quadrature
8
quadrature method
8
entropy generation
8
method
6
second law
4
law analysis
4
analysis unsteady
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!