A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Nonrigid Medical Image Registration Using an Information Theoretic Measure Based on Arimoto Entropy with Gradient Distributions. | LitMetric

This paper introduces a new nonrigid registration approach for medical images applying an information theoretic measure based on Arimoto entropy with gradient distributions. A normalized dissimilarity measure based on Arimoto entropy is presented, which is employed to measure the independence between two images. In addition, a regularization term is integrated into the cost function to obtain the smooth elastic deformation. To take the spatial information between voxels into account, the distance of gradient distributions is constructed. The goal of nonrigid alignment is to find the optimal solution of a cost function including a dissimilarity measure, a regularization term, and a distance term between the gradient distributions of two images to be registered, which would achieve a minimum value when two misaligned images are perfectly registered using limited-memory Broyden-Fletcher-Goldfarb-Shanno (L-BFGS) optimization scheme. To evaluate the test results of our presented algorithm in non-rigid medical image registration, experiments on simulated three-dimension (3D) brain magnetic resonance imaging (MR) images, real 3D thoracic computed tomography (CT) volumes and 3D cardiac CT volumes were carried out on package. Comparison studies including mutual information (MI) and the approach without considering spatial information were conducted. These results demonstrate a slight improvement in accuracy of non-rigid registration.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514671PMC
http://dx.doi.org/10.3390/e21020189DOI Listing

Publication Analysis

Top Keywords

gradient distributions
16
measure based
12
based arimoto
12
arimoto entropy
12
medical image
8
image registration
8
theoretic measure
8
entropy gradient
8
dissimilarity measure
8
regularization term
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!