Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Recently, high-entropy alloy thin films (HEATFs) with nanocrystalline structures and high hardness were developed by magnetron sputtering technique and have exciting potential to make small structure devices and precision instruments with sizes ranging from nanometers to micrometers. However, the strength and deformation mechanisms are still unclear. In this work, nanocrystalline AlCoCrFeNi HEATFs with a thickness of ~4 μm were prepared. The microstructures of the thin films were comprehensively characterized, and the mechanical properties were systematically studied. It was found that the thin film was smooth, with a roughness of less than 5 nm. The chemical composition of the high entropy alloy thin film was homogeneous with a main single face-centered cubic (FCC) structure. Furthermore, it was observed that the hardness and the yield strength of the high-entropy alloy thin film was about three times that of the bulk samples, and the plastic deformation was inhomogeneous. Our results could provide an in-depth understanding of the mechanics and deformation mechanism for future design of nanocrystalline HEATFs with desired properties.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514628 | PMC |
http://dx.doi.org/10.3390/e21020146 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!