A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Improving the Performance of Storage Tank Fault Diagnosis by Removing Unwanted Components and Utilizing Wavelet-Based Features. | LitMetric

AI Article Synopsis

  • This paper presents a fault diagnosis model for spherical storage tanks using a blind source separation (BSS) technique to improve signal clarity.
  • The BSS method separates noise from useful components, which helps distinguish between normal and faulty tank conditions more effectively.
  • The extracted features were analyzed using support vector machines, achieving high classification accuracies of 97.25% and 98.48%, outperforming existing techniques.

Article Abstract

This paper proposes a reliable fault diagnosis model for a spherical storage tank. The proposed method first used a blind source separation (BSS) technique to de-noise the input signals so that the signals acquired from a spherical tank under two types of conditions (i.e., normal and crack conditions) were easily distinguishable. BSS split the signals into different sources that provided information about the noise and useful components of the signals. Therefore, an unimpaired signal could be restored from the useful components. From the de-noised signals, wavelet-based fault features, i.e., the relative energy (REWPN) and entropy (EWPN) of a wavelet packet node, were extracted. Finally, these features were used to train one-against-all multiclass support vector machines (OAA MCSVMs), which classified the instances of normal and faulty states of the tank. The efficiency of the proposed fault diagnosis model was examined by visualizing the de-noised signals obtained from the BSS method and its classification performance. The proposed fault diagnostic model was also compared to existing techniques. Experimental results showed that the proposed method outperformed conventional techniques, yielding average classification accuracies of 97.25% and 98.48% for the two datasets used in this study.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7845777PMC
http://dx.doi.org/10.3390/e21020145DOI Listing

Publication Analysis

Top Keywords

fault diagnosis
12
storage tank
8
diagnosis model
8
proposed method
8
de-noised signals
8
proposed fault
8
signals
6
fault
5
improving performance
4
performance storage
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!