Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The reconstruction of positron emission tomography data is a difficult task, particularly at low count rates because Poisson noise has a significant influence on the statistical uncertainty of positron emission tomography (PET) measurements. Prior information is frequently used to improve image quality. In this paper, we propose the use of a field of experts to model a priori structure and capture anatomical spatial dependencies of the PET images to address the problems of noise and low count data, which make the reconstruction of the image difficult. We reconstruct PET images by using a modified MXE algorithm, which minimizes a objective function with the cross-entropy as a fidelity term, while the field of expert model is incorporated as a regularizing term. Comparisons with the expectation maximization algorithm and a iterative method with a prior penalizing relative differences showed that the proposed method can lead to accurate estimation of the image, especially with acquisitions at low count rate.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514193 | PMC |
http://dx.doi.org/10.3390/e21010083 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!