Maximum entropy principle (MEP) analysis with few non-zero effective interactions successfully characterizes the distribution of dynamical states of pulse-coupled networks in many fields, e.g., in neuroscience. To better understand the underlying mechanism, we found a relation between the dynamical structure, i.e., effective interactions in MEP analysis, and the anatomical coupling structure of pulse-coupled networks and it helps to understand how a sparse coupling structure could lead to a sparse coding by effective interactions. This relation quantitatively displays how the dynamical structure is closely related to the anatomical coupling structure.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7514185PMC
http://dx.doi.org/10.3390/e21010076DOI Listing

Publication Analysis

Top Keywords

coupling structure
16
pulse-coupled networks
12
effective interactions
12
structure pulse-coupled
8
maximum entropy
8
mep analysis
8
dynamical structure
8
anatomical coupling
8
structure
6
dynamical
4

Similar Publications

Photocurrent Generation by Plant Light-Harvesting Complexes is Enhanced by Lipid-Linked Chromophores in a Self-Assembled Lipid Membrane.

J Phys Chem B

January 2025

Department of Life Science and Applied Chemistry, Graduate School of Engineering, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan.

The light-harvesting pigment-protein complex II (LHCII) from plants can be used as a component for biohybrid photovoltaic devices, acting as a photosensitizer to increase the photocurrent generated when devices are illuminated with sunlight. LHCII is effective at photon absorption in the red and blue regions of the visible spectrum, however, it has low absorption in the green region (550-650 nm). Previous studies have shown that synthetic chromophores can be used to fill this spectral gap and transfer additional energy to LHCII, but it was uncertain whether this would translate into an improved performance for photovoltaics.

View Article and Find Full Text PDF

In this study, we worked at the CCSD/aug-cc-pVTZ level to obtain the conformers of glycine in its neutral and zwitterionic forms in the gas and water phases. We then computed the NMR properties (spin-spin coupling constants and nuclear magnetic shieldings) at the SOPPA/aug-cc-pVTZ-J level. We attempt to elucidate the apparent discrepancy arising from two previous works by Valverde et al.

View Article and Find Full Text PDF

Background: LatAm-FINGERS is a non-pharmacological multicenter randomized clinical trial aimed at preventing cognitive impairment. The intervention advocates for a lifestyle change based on diet, exercise, risk factor control, cognitive training, and socialization. However, the baseline assessment lacks a evaluation of the participants sociability before the intervention.

View Article and Find Full Text PDF

Background: Black Americans (BAs), Hispanics/Latinos (H/Ls), and Africans (As) face a disproportionate burden of aging and Alzheimer's Disease and Related Dementias (AD/ADRD), coupled with underrepresentation in research. Further, researchers also report a lack of compliance on sensitive social determinants of health data for AD/ADRD research. For instance, the PRAPARE tool reports a low completion rate in community and clinical settings.

View Article and Find Full Text PDF

Background: Underdiagnosis of Alzheimer's disease and related dementias (ADRD) leads to lost opportunities for timely intervention, increased healthcare costs, and underestimation of the true burden of disease. To address this problem, we developed an AI algorithm, Decipher-AI (DEtection of Cognitive Impairment PHenotypes in EHR), to screen primary care patients for undiagnosed cognitive impairment (CI). We evaluated performance across sociodemographic groups using 3 years of EHR data before the first diagnosis or most recent visit.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!