The processing and analyzing of multimedia data has become a popular research topic due to the evolution of deep learning. Deep learning has played an important role in addressing many challenging problems, such as computer vision, image recognition, and image detection, which can be useful in many real-world applications. In this study, we analyzed visual features of images to detect advertising images from scanned images of various magazines. The aim is to identify key features of advertising images and to apply them to real-world application. The proposed work will eventually help improve marketing strategies, which requires the classification of advertising images from magazines. We employed convolutional neural networks to classify scanned images as either advertisements or non-advertisements (i.e., articles). The results show that the proposed approach outperforms other classifiers and the related work in terms of accuracy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512581PMC
http://dx.doi.org/10.3390/e20120982DOI Listing

Publication Analysis

Top Keywords

deep learning
12
advertising images
12
scanned images
8
images magazines
8
images
6
non-ad deep
4
learning approach
4
approach detect
4
detect advertisements
4
advertisements magazines
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!