A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A Novel Multi-Exposure Image Fusion Method Based on Adaptive Patch Structure. | LitMetric

AI Article Synopsis

  • Multi-exposure image fusion methods enhance low-dynamic images taken from the same scene at various exposure levels, resulting in images that better resemble human visual perception.
  • This study introduces a new multi-exposure image fusion method that improves local contrast and captures detailed information by using advanced techniques like cartoon-texture decomposition and structural similarity index.
  • Experimental results demonstrate that this approach produces high-quality high-dynamic-range images with superior visual effects and detail compared to existing methods.

Article Abstract

Multi-exposure image fusion methods are often applied to the fusion of low-dynamic images that are taken from the same scene at different exposure levels. The fused images not only contain more color and detailed information, but also demonstrate the same real visual effects as the observation by the human eye. This paper proposes a novel multi-exposure image fusion (MEF) method based on adaptive patch structure. The proposed algorithm combines image cartoon-texture decomposition, image patch structure decomposition, and the structural similarity index to improve the local contrast of the image. Moreover, the proposed method can capture more detailed information of source images and produce more vivid high-dynamic-range (HDR) images. Specifically, image texture entropy values are used to evaluate image local information for adaptive selection of image patch size. The intermediate fused image is obtained by the proposed structure patch decomposition algorithm. Finally, the intermediate fused image is optimized by using the structural similarity index to obtain the final fused HDR image. The results of comparative experiments show that the proposed method can obtain high-quality HDR images with better visual effects and more detailed information.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512522PMC
http://dx.doi.org/10.3390/e20120935DOI Listing

Publication Analysis

Top Keywords

image
12
multi-exposure image
12
image fusion
12
patch structure
12
novel multi-exposure
8
method based
8
based adaptive
8
adaptive patch
8
visual effects
8
image patch
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!