Entropy and Mutability for the -State Clock Model in Small Systems.

Entropy (Basel)

Centro para el Desarrollo de la Nanociencia y la Nanotecnología, CEDENNA, Santiago 8320000, Chile.

Published: December 2018

In this paper, we revisit the -state clock model for small systems. We present results for the thermodynamics of the -state clock model for values from q = 2 to q = 20 for small square lattices of L × L , with L ranging from L = 3 to L = 64 with free-boundary conditions. Energy, specific heat, entropy, and magnetization were measured. We found that the Berezinskii-Kosterlitz-Thouless (BKT)-like transition appears for q > 5, regardless of lattice size, while this transition at q = 5 is lost for L < 10; for q ≤ 4, the BKT transition is never present. We present the phase diagram in terms of that shows the transition from the ferromagnetic (FM) to the paramagnetic (PM) phases at the critical temperature T 1 for small systems, and the transition changes such that it is from the FM to the BKT phase for larger systems, while a second phase transition between the BKT and the PM phases occurs at T 2. We also show that the magnetic phases are well characterized by the two-dimensional (2D) distribution of the magnetization values. We made use of this opportunity to carry out an information theory analysis of the time series obtained from Monte Carlo simulations. In particular, we calculated the phenomenological mutability and diversity functions. Diversity characterizes the phase transitions, but the phases are less detectable as increases. Free boundary conditions were used to better mimic the reality of small systems (far from any thermodynamic limit). The role of size is discussed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512520PMC
http://dx.doi.org/10.3390/e20120933DOI Listing

Publication Analysis

Top Keywords

small systems
16
-state clock
12
clock model
12
model small
8
transition
6
small
5
systems
5
entropy mutability
4
mutability -state
4
systems paper
4

Similar Publications

Background: PATHFINDER was a prospective cohort study of multicancer early detection (MCED) testing in an outpatient ambulatory population. The aim of this study is to report the patient-reported outcomes (PROs) collected as secondary and exploratory measures in the PATHFINDER study.

Methods: PATHFINDER is a prospective, multicentre, cohort study that enrolled existing healthy ambulatory outpatients at seven health networks in the USA, including hospitals, academic medical centres, and integrated health systems.

View Article and Find Full Text PDF

The riverine dissolved organic matter (DOM) pool constitutes the largest and most dynamic organic carbon reservoir within inland aquatic systems. Human activities significantly alter the distribution of organic matter (OM) in rivers, thereby affecting the availability of DOM. However, the impact of total suspended solids (TSS) on DOM under anthropogenic influence remains insufficiently elucidated.

View Article and Find Full Text PDF

Cooperation of Lactoplantibacillus plantarum and polyethylene microplastics facilitated the disappearance of tetracycline during anaerobic fermentation of whole plant maize.

J Hazard Mater

January 2025

College of Animal Science, Guizhou University, Guiyang 550025, China; Key Laboratory of Animal Genetics, Breeding & Reproduction in the Plateau Mountainous Region, Ministry of Education, Guizhou University, Guiyang 550025, China. Electronic address:

In agricultural production systems, the harm of both antibiotics and microplastics (MPs) to human health has been an important and continuously concerned issue. A small bagged silage production system was designed to investigate the effects of Lactoplantibacillus plantarum, polyethylene (PE) -MPs and their mixture on the silage fermentation and chemical composition of Tetracycline (TET) -contaminated whole plant maize. In addition, the bacterial community of silage samples was analyzed by using next generation genome sequencing technology.

View Article and Find Full Text PDF

Machine learning outperforms humans in microplastic characterization and reveals human labelling errors in FTIR data.

J Hazard Mater

December 2024

Discipline of Chemistry, The University of Newcastle, University Drive, Newcastle, New South Whales 2308, Australia; School of Chemistry, Monash University, Wellington Road, Melbourne, Victoria 3800, Australia. Electronic address:

Microplastics are ubiquitous and appear to be harmful, however, the full extent to which these inflict harm has not been fully elucidated. Analysing environmental sample data is challenging, as the complexity in real data makes both automated and manual analysis either unreliable or time-consuming. To address challenges, we explored a dense feed-forward neural network (DNN) for classifying Fourier transform infrared (FTIR) spectroscopic data.

View Article and Find Full Text PDF

Conductive metal-organic frameworks (MOFs) are crystalline, intrinsically porous materials that combine remarkable electrical conductivity with exceptional structural and chemical versatility. This rare combination makes these materials highly suitable for a wide range of energy-related applications. However, the electrical conductivity in MOF-based devices is often limited by the presence of different types of structural disorder.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!