A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Mechanical Fault Diagnosis of HVCBs Based on Multi-Feature Entropy Fusion and Hybrid Classifier. | LitMetric

Mechanical Fault Diagnosis of HVCBs Based on Multi-Feature Entropy Fusion and Hybrid Classifier.

Entropy (Basel)

Maintenance Company of State Grid Zhejiang Electric Power Company, Hangzhou 310000, China.

Published: November 2018

As high-voltage circuit breakers (HVCBs) are directly related to the safety and the stability of a power grid, it is of great significance to carry out fault diagnoses of HVCBs. To accurately identify operating states of HVCBs, a novel mechanical fault diagnosis method of HVCBs based on multi-feature entropy fusion (MFEF) and a hybrid classifier is proposed. MFEF involves the decomposition of vibration signals of HVCBs into several intrinsic mode functions using variational mode decomposition (VMD) and the calculation of multi-feature entropy by the integration of three Shannon entropies. Principle component analysis (PCA) is then used to reduce the dimension of the multi-feature entropy to achieve an effective fusion of features for selecting the feature vector. The detection of an unknown fault in HVCBs is achieved using support vector data description (SVDD) trained by normal-state samples and specific fault samples. On this basis, the identification and classification of the known states are realized by the support vector machine (SVM). Three faults (i.e., closing spring force decrease fault, buffer spring invalid fault, opening spring force decrease fault) are simulated on a real SF6 HVCB to test the feasibility of the proposed method. The detection accuracies of the unknown fault are 100%, 87.5%, and 100% respectively when each of the three faults is assumed to be the unknown fault. The comparative experiments show that SVM has no ability to detect the unknown fault, and that one-class support vector machine (OCSVM) has a weaker ability to detect the unknown fault than SVDD. For known-state classification, the adoption of the MFEF method achieved an accuracy of 100%, while the use of a single-feature method only achieved an accuracy of 75%. These results indicate that the proposed method combining MFEF with hybrid classifier is thus more efficient and robust than traditional methods.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512408PMC
http://dx.doi.org/10.3390/e20110847DOI Listing

Publication Analysis

Top Keywords

unknown fault
20
multi-feature entropy
16
hybrid classifier
12
support vector
12
fault
11
mechanical fault
8
fault diagnosis
8
hvcbs based
8
based multi-feature
8
entropy fusion
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!