Revisiting Information Detection and Energy Harvesting: A Power Splitting-Based Approach.

Entropy (Basel)

School of Electrical and Electronics Engineering, Chung-Ang University, Seoul 06974, Korea.

Published: November 2020

Wireless sensors are becoming essential in machine-type communications and Internet of Things. As the key performance metrics, the spectral efficiency as well as the energy efficiency have been considered while determining the effectiveness of sensor networks. In this paper, we present several power-splitting solutions to maximize the average harvested energy under a rate constraint when both the information and power are transmitted through the same wireless channel to a sensor (i.e., a receiver). More specifically, we first designed the optimal dynamic power-splitting policy, which decides the optimal fractional power of the received signal used for energy harvesting at the receiver. As effective solutions, we proposed two types of single-threshold-based power-splitting policies, namely, Policies I and II, which decide to switch between energy harvesting and information decoding by comparing the received signal power with some given thresholds. Additionally, we performed asymptotic analysis for a large number of packets along with practical statistics-based policies. Consequently, we demonstrated the effectiveness of the proposed power-splitting solutions in terms of the rate-energy trade-off.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761457PMC
http://dx.doi.org/10.3390/e22121341DOI Listing

Publication Analysis

Top Keywords

energy harvesting
12
power-splitting solutions
8
received signal
8
energy
5
revisiting detection
4
detection energy
4
power
4
harvesting power
4
power splitting-based
4
splitting-based approach
4

Similar Publications

Combination of Broad Light-Absorption CuS with S,C,N-TiO: Assessment of Photocatalytic Performance in Nitrogen Fixation Reaction.

Inorg Chem

January 2025

Research Laboratory of Advanced Water and Wastewater Treatment Processes, Department of Applied Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz 51666-16471, Iran.

In the field of solar energy storage, photocatalytic ammonia production is a next-generation technology. The rapid recombination of charges and insignificant utilization of the sunlight spectrum are bottlenecks of effective photocatalytic N fixation. The introduction of impurities in the crystal lattice and the development of heterojunctions could effectively segregate carriers and improve the solar-light-harvesting capability, which can boost NH generation.

View Article and Find Full Text PDF

A recurring challenge in extracting energy from ambient motion is that devices must maintain high harvesting efficiency and a positive user experience when the interface is undergoing dynamic compression. We show that small amphiphiles can be used to tune friction, haptics, and triboelectric properties by assembling into specific conformations on the surfaces of materials. Molecules that form multiple slip planes under pressure, especially through π-π stacking, produce 80 to 90% lower friction than those that form disordered mesostructures.

View Article and Find Full Text PDF

While piezoelectric sensing and energy-harvesting devices still largely rely on inorganic components, biocompatible and biodegradable piezoelectric materials, such as cellulose nanocrystals, might constitute optimal and sustainable building blocks for a variety of applications in electronics and transient implants. To this aim, however, effective methods are needed to position cellulose nanocrystals in large and high-performance architectures. Here, we report on scalable assemblies of cellulose nanocrystals in multilayered piezoelectric systems with exceptional response, for various application scopes.

View Article and Find Full Text PDF

Perspective on Flexible Organic Solar Cells for Self-Powered Wearable Applications.

ACS Appl Mater Interfaces

January 2025

Laboratory of Advanced Optoelectronic Materials, Suzhou Key Laboratory of Novel Semiconductor-Optoelectronics Materials and Devices, College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China.

The growing advancement of wearable technologies and sophisticated sensors has driven the need for environmentally friendly and reliable energy sources with robust mechanical stability. Flexible organic solar cells (OSCs) have become promising substitutes for traditional energy solutions thanks to their remarkable mechanical flexibility and high power conversion efficiency (PCE). These unique properties allow flexible OSCs to seamlessly integrate with diverse devices and substrates, making them an excellent choice for powering various electronic devices by efficiently harvesting solar energy.

View Article and Find Full Text PDF

Ice-Confined Synthesis of Stacked Polymer Nanospheres as Osmotic Power Generation Membranes.

Nano Lett

January 2025

State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials (iChEM), Innovation Laboratory for Sciences and Technologies of Energy Materials of Fujian Province (IKKEM), College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, P. R. China.

Osmotic power extracts electricity from salinity gradients and provides a viable route toward clean energy. To improve the energy conversion efficiency, common strategies rely on fabricating precisely controlled nanopores to meet the requirements of high ionic conductivity and selectivity. We report ion transport through the free-volume networks in stacked polymer nanospheres for osmotic power harvesting.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!