Electromagnetic stirring (EMS) has become one of the most important branches of the electromagnetic processing of materials. However, a deep understanding of the influence of the EMS on the thermo-fluid flow of the aluminium alloy melt, and consequently the refinement of the microstructure is still not available. This paper investigated the influence of the operating parameters of EMS on the magnetohydrodynamics, temperature field, flow field, and the vortex-shaped structure of the melt as well as the microstructure of the aluminium alloy 2A50 billet by numerical simulation and experiments. The operating parameters were categorised into three groups representing high, medium, and low levels of Lorentz forces generated by EMS. The numerical simulation matched well with the experimental result. It was found that a high level of EMS can improve the uniformity of the temperature and flow fields. The maximum speed was observed at the radius of around 25 mm under all EMS levels. Both the depth and diameter of the vortex-shaped structure generated increased with the enhancement in the EMS level. The average grain size of the edge sample of the billet was reduced by 48.3% while the average shape factor was increased by 51.0% under the medium-level EMS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730590PMC
http://dx.doi.org/10.3390/ma13235470DOI Listing

Publication Analysis

Top Keywords

numerical simulation
12
aluminium alloy
12
alloy 2a50
8
electromagnetic stirring
8
ems
8
operating parameters
8
vortex-shaped structure
8
simulation experimental
4
experimental investigation
4
investigation preparation
4

Similar Publications

We build and study an individual based model of the telomere length's evolution in a population across multiple generations. This model is a continuous time typed branching process, where the type of an individual includes its gamete mean telomere length and its age. We study its Malthusian's behaviour and provide numerical simulations to understand the influence of biologically relevant parameters.

View Article and Find Full Text PDF

Total population for a resource-limited single consumer model.

J Math Biol

January 2025

Department of Integrative Biology, Oklahoma State University, Stillwater, OK, 74078, USA.

In the past several decades, much attention has been focused on the effects of dispersal on total populations of species. In Zhang (EL 20:1118-1128, 2017), a rigorous biological experiment was performed to confirm the mathematical conclusion: Dispersal tends to enhance populations under a suitable hypothesis. In addition, mathematical models keeping track of resource dynamics in population growth were also proposed in Zhang (EL 20:1118-1128, 2017) to understand this remarkable phenomenon.

View Article and Find Full Text PDF

Slopes influenced by multiple faults are prone to large-scale landslides triggered by multi-regional failures. Understanding the failure process and sequence is essential for the sustainable development of mining operations. This paper presents a method combining InSAR monitoring and numerical simulation to analyze the failure processes of slopes affected by multiple faults.

View Article and Find Full Text PDF

Failure modes and interaction mechanisms of tunnel under active landslide conditions.

Sci Rep

January 2025

China Academy of Railway Sciences Co. Ltd, Beijing, 100081, China.

The construction of tunnels can easily trigger the reactivation of old landslide bodies, posing a threat to the transportation safety. In this study, using methods such as engineering geological investigation, slope deformation monitoring, deep displacement monitoring, and numerical simulation, the interaction between landslides and tunnels was investigated from the perspective of landslide deformation and failure characteristics. The Walibie Tunnel (WLBT) of Shangri-La to Lijiang (XL) expressway was taken as an example.

View Article and Find Full Text PDF

Rigid reinforced concrete (RC) frames are generally adopted as stiff elements to make the building structures resistant to seismic forces. However, a method has yet to be fully sought to provide earthquake resistance through optimizing beam and column performance in a rigid frame. Due to its high corrosion resistance, the integration of CFRP offers an opportunity to reduce frequent repairs and increase durability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!