Role of Stimuli on Liquid Crystalline Defects: From Defect Engineering to Switchable Functional Materials.

Materials (Basel)

Korea Advanced Institute of Science and Technology (KAIST), Graduate School of Nanoscience and Technology, Daejeon 34141, Korea.

Published: November 2020

Achieving tunable physical properties is currently one of the most exciting research topics. In order to realize this goal, a medium that is responsive to external stimuli and can undergo a change in its physical property is required. Liquid crystal (LC) is a prominent candidate, as its physical and optical properties can be easily manipulated with various stimuli, such as surface anchoring, rubbing, geometric confinement, and external fields. Having broken away from the past devotion to obtaining a uniform domain of LCs, people are now putting significant efforts toward forming and manipulating ordered and oriented defect structures with a unique arrangement within. The complicated molecular order with tunability would benefit the interdisciplinary research fields of optics, physics, photonics, and materials science. In this review, the recent progress toward defect engineering in the nematic and smectic phases by controlling the surface environment and electric field and their combinational methods is introduced. We close the review with a discussion of the possible applications enabled using LC defect structures as switchable materials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729749PMC
http://dx.doi.org/10.3390/ma13235466DOI Listing

Publication Analysis

Top Keywords

defect engineering
8
defect structures
8
role stimuli
4
stimuli liquid
4
liquid crystalline
4
crystalline defects
4
defect
4
defects defect
4
engineering switchable
4
switchable functional
4

Similar Publications

The theoretical study of instabilities, thermal fluctuations, and topological defects in the crystal-rotator-I-rotator-II (X-R-R) phase transitions of -alkanes has been conducted. First, we examine the nature of the R-R phase transition in nanoconfined alkanes. We propose that under confined conditions, the presence of quenched random orientational disorder makes the R phase unstable.

View Article and Find Full Text PDF

Background: Protein-truncating mutations in the titin gene are associated with increased risk of atrial fibrillation. However, little is known about the underlying pathophysiology.

Methods: We identified a heterozygous titin truncating variant (TTNtv) in a patient with unexplained early onset atrial fibrillation and normal ventricular function.

View Article and Find Full Text PDF

Semiconductor photocatalytic antibacterial materials and their application for bone infection treatment.

Nanoscale Horiz

January 2025

State Key Laboratory of Precision Manufacturing for Extreme Service Performance, College of Mechanical and Electrical Engineering, Central South University, Changsha 410083, China.

Bacterial infection in bone tissue engineering is a severe clinical issue. Traditional antimicrobial methods usually cause problems such as bacterial resistance and biosecurity. Employing semiconductor photocatalytic antibacterial materials is a more controlled and safer strategy, wherein semiconductor photocatalytic materials generate reactive oxygen species under illumination for killing bacteria by destroying their cell membranes, proteins, DNA, In this review, P-type and N-type semiconductor photocatalytic materials and their antibacterial mechanisms are introduced.

View Article and Find Full Text PDF

The intercalation of metal chlorides, and particularly iron chlorides, into graphitic carbon structures has recently received lots of attention, as it can not only protect this two-dimensional (2D) magnetic system from the effects of the environment but also substantially alter the magnetic, electronic, and optical properties of both the intercalant and host material. At the same time, intercalation can result in the formation of structural defects or defects can appear under external stimuli, which can affect materials performance. These aspects have received so far little attention in dedicated experiments.

View Article and Find Full Text PDF

Protective effects of 18β-glycyrrhetinic acid on -induced vascular inflammatory injury in mice.

Front Vet Sci

January 2025

Hubei Key Laboratory of Animal Nutrition and Feed Science, School of Animal Science and Nutritional Engineering, Wuhan Polytechnic University, Wuhan, China.

(Pm) is a widespread zoonotic pathogen with the ability to infect wild animals, livestock, and humans. Pm infection can cause haemorrhagic pneumonia, indicating that the pathogenesis involves serious vascular injury and inflammation. 18β-Glycyrrhetinic acid (GA) has cardiovascular protective and anti-inflammatory effects, but its effect on vascular injury caused by Pm infection is not clear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!