The effect of gallium on the oxide film structure and overall oxidation resistance of low melting point Sn-Bi-Zn alloys was investigated under air atmosphere using thermogravimetric analyses. The liquid alloys studied had a Ga content of 1-7 wt.%. The results showed that the growth rates of the surface scale formed on the Sn-Bi-Zn-Ga alloys conformed to the parabolic law. The oxidation resistance of Sn-Bi-Zn alloys was improved by Ga addition and the activation energies increased from 12.05 kJ∙mol to 22.20 kJ∙mol. The structure and elemental distribution of the oxide film surface and cross-section were found to become more complicated and denser with Ga addition. Further, the results of X-ray photoelectron spectroscopy and X-ray diffraction show that Ga elements accumulate on the surface of the liquid metal to form oxides, which significantly slowed the oxidation of the surface of the liquid alloy.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730495PMC
http://dx.doi.org/10.3390/ma13235461DOI Listing

Publication Analysis

Top Keywords

oxide film
12
oxidation resistance
12
sn-bi-zn alloys
12
film structure
8
structure oxidation
8
resistance sn-bi-zn
8
surface liquid
8
alloys
5
oxidation
4
alloys heat
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!