An Enantioselective Approach to 4-Substituted Proline Scaffolds: Synthesis of ()-5-(-Butoxy Carbonyl)-5-Azaspiro[2.4]heptane-6-Carboxylic Acid.

Molecules

Departament de Química Inorgànica i Orgànica, Secció de Química Orgànica, Facultat de Química, Universitat de Barcelona, Martí i Franquès 1-11, 08028 Barcelona, Spain.

Published: November 2020

A catalytic and enantioselective preparation of the ()-4-methyleneproline scaffold is described. The key reaction is a one-pot double allylic alkylation of an imine analogue of glycine in the presence of a chinchonidine-derived catalyst under phase transfer conditions. These 4-methylene substituted proline derivatives are versatile starting materials often used in medicinal chemistry. In particular, we have transformed -butyl ()-4-methyleneprolinate () into the -Boc-protected 5-azaspiro[2.4]heptane-6-carboxylic acid (), a key element in the industrial synthesis of antiviral ledipasvir.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7729483PMC
http://dx.doi.org/10.3390/molecules25235644DOI Listing

Publication Analysis

Top Keywords

enantioselective approach
4
approach 4-substituted
4
4-substituted proline
4
proline scaffolds
4
scaffolds synthesis
4
synthesis -5--butoxy
4
-5--butoxy carbonyl-5-azaspiro[24]heptane-6-carboxylic
4
carbonyl-5-azaspiro[24]heptane-6-carboxylic acid
4
acid catalytic
4
catalytic enantioselective
4

Similar Publications

Axial chiral biaryl skeletons are widely found in biologically active molecules, catalysts and chiral functional materials. However, highly catalytic stereoselective synthesis of tetra-ortho-substituted biaryls remains a challenging task. In this paper, we describe an efficient approach for construction of axially tetra-ortho-substituted biaryls via Suzuki-Miyaura coupling in the presence of a chiral monophosphate ligand developed by ourselves.

View Article and Find Full Text PDF

Achieving axially chiral biaryl dialdehydes through asymmetric catalysis remains significantly challenging due to the lack of efficient strategies. In this report, we developed a rhodium-catalyzed enantioselective C-H amidation through chiral transient directing group strategy. With this new approach, a series of axially chiral amido dialdehydes were achieved in up to 86% yields with 99.

View Article and Find Full Text PDF

Chiral isomers show different behaviours and properties in physiological activities. It is of great significance to find productive approach to realize the recognition of enantiomers, which is a key issue in biochemical and pharmaceutical fields. Nowadays, chiral identification can be successfully achieved according to the discrepancies of special signals correlated with different enantiomers of multiple electrode structures.

View Article and Find Full Text PDF

From Radical Coupling to Enantioselective Controlled Protonation: Advancing Precise Construction of Stereocenters.

J Am Chem Soc

January 2025

Henan Key Laboratory of Natural Medicine Innovation and Transformation, Henan University, Kaifeng, Henan 475004, PR China.

Recent advancements in green and sustainable platforms, particularly visible light-driven photocatalysis, have spurred significant progress in radical chemistry, enabling the efficient synthesis of important molecules from simple and readily available feedstocks under mild conditions. However, the rapid orbital flipping and high reactivity of radicals pose substantial challenges for achieving precise enantiocontrol in stereocenter formation via radical coupling. In this study, we present a generic and efficient strategy that modulates this elusive approach, facilitating enantiocontrollable protonation through 1,3-boron migration.

View Article and Find Full Text PDF

Catalytic Asymmetric Dehydrogenative Si-H/X-H Coupling toward Si-Stereogenic Silanes.

Acc Chem Res

January 2025

Shenzhen Grubbs Institute and Department of Chemistry, Shenzhen Key Laboratory of Small Molecule Drug Discovery and Synthesis, Guangdong Provincial Key Laboratory of Catalysis, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.

ConspectusChiral organosilicon compounds bearing a Si-stereogenic center have attracted increasing attention in various scientific communities and appear to be a topic of high current relevance in modern organic chemistry, given their versatile utility as chiral building blocks, chiral reagents, chiral auxiliaries, and chiral catalysts. Historically, access to these non-natural Si-stereogenic silanes mainly relies on resolution, whereas their asymmetric synthetic methods dramatically lagged compared to their carbon counterparts. Over the past two decades, transition-metal-catalyzed desymmetrization of prochiral organosilanes has emerged as an effective tool for the synthesis of enantioenriched Si-stereogenic silanes.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!