AI Article Synopsis

  • The study focuses on creating and analyzing self-assembled monolayers (SAMs) made from multifunctional amide-containing thiols, which have potential for tailored interfaces with unique stability and properties.
  • Researchers synthesized thiols with a phenylalanine side group and characterized them on gold surfaces using reflection absorption infrared spectroscopy (RAIRS).
  • Findings showed that the formation of these SAMs involves a change from a disordered to an ordered structure influenced by hydrogen bonding, with specific vibrational frequency changes observed over time, though the lateral interactions among alkyl chains were weaker compared to typical well-ordered thiol monolayers.

Article Abstract

Multifunctional amide-containing self-assembled monolayers (SAMs) provide prospects for the construction of interfaces with required physicochemical properties and distinctive stability. In this study, we report the synthesis of amide-containing thiols with terminal phenylalanine (Phe) ring functionality (HS(CH)CONH(CH)CH) and the characterization of the formation of SAMs from these thiols on gold by reflection absorption infrared spectroscopy (RAIRS). For reliable assignments of vibrational bands, ring deuterated analogs were synthesized and studied as well. Adsorption time induced changes in Amide-II band frequency and relative intensity of Amide-II/Amide-I bands revealed two-state sigmoidal form dependence with a transition inflection points at 2.2 ± 0.5 and 4.7 ± 0.5 min, respectively. The transition from initial (disordered) to final (hydrogen-bonded, ordered) structure resulted in increased Amide-II frequency from 1548 to 1557 cm, which is diagnostic for a strongly hydrogen-bonded amide network in trans conformation. However, the lateral interactions between the alkyl chains were found to be somewhat reduced when compared with well-ordered alkane thiol monolayers.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7730404PMC
http://dx.doi.org/10.3390/molecules25235633DOI Listing

Publication Analysis

Top Keywords

reflection absorption
8
absorption infrared
8
infrared spectroscopy
8
phe ring
8
spectroscopy characterization
4
characterization sam
4
sam formation
4
formation 8-mercapto--phenethyloctanamide
4
8-mercapto--phenethyloctanamide thiols
4
thiols phe
4

Similar Publications

The aim of the present work is to investigate the photocatalytic degradation of propyl paraben (propyl para-hydroxybenzoate, PrP) using CuO-ZnO-NPs photocatalyst followed by the identification of the oxidation by-products. The CuO-ZnO-NPs material, synthesized using a green chemistry approach, was used as a photocatalyst for the removal of PrP. The nanoparticles were characterized by XRD, XRF, diffuse reflectance spectroscopy, ATG/DTG, FTIR, SEM-EDX, BET and FRX techniques.

View Article and Find Full Text PDF

Fluorescence fluctuation spectroscopy experiments were conducted to better understand the complex mass transport dynamics of organic molecules in liquid-filled nanoporous media. Anodic aluminum oxide (AAO) membranes incorporating 10 and 20 nm diameter cylindrical pores were employed as model materials. Nile red (NR) dye was used as a fluorescent tracer.

View Article and Find Full Text PDF

High-Performance Thermoelectric Composite of BiTe Nanosheets and Carbon Aerogel for Harvesting of Environmental Electromagnetic Energy.

ACS Nano

January 2025

State Key Laboratory of Materials Processing and Die & Mould Technology, and School of Materials Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, Hubei, P. R. China.

Intensifying the severity of electromagnetic (EM) pollution in the environment represents a significant threat to human health and results in considerable energy wastage. Here, we provide a strategy for electricity generation from heat generated by electromagnetic wave radiation captured from the surrounding environment that can reduce the level of electromagnetic pollution while alleviating the energy crisis. We prepared a porous, elastomeric, and lightweight BiTe/carbon aerogel (CN@BiTe) by a simple strategy of induced in situ growth of BiTe nanosheets with three-dimensional (3D) carbon structure, realizing the coupling of electromagnetic wave absorption (EMA) and thermoelectric (TE) properties.

View Article and Find Full Text PDF

Carbon microspheres (CMSs) are recognized as highly effective microwave absorbers due to their exceptional wave absorption properties. In this study, 5,10,15,20-tetrakis(4-aminophenyl)porphyrin, a metamaterial, was chemically bonded to CMSs─considered a conjugated carbon structure─using a 1,3-dibromopropane linker to explore the synergistic properties and microwave absorption capabilities of the synthesized composite. The synthesized structures were characterized by using X-ray diffraction, FE-SEM, Fourier transform infrared, diffuse reflectance spectroscopy, and VNA analyses.

View Article and Find Full Text PDF

Relationship between skin temperature and blood flow during exposure to radio frequency energy: implications for device development.

BMC Biomed Eng

January 2025

William B. Burnsed Jr. Department of Mechanical, Aerospace, and Biomedical Engineering, University of South Alabama, 150 Student Services Drive, Mobile, AL, 36688, USA.

Background: The ST response to high frequency EM heating may give an indication of rate of BF in underlying tissue. This novel method, which we have termed REFLO (Rapid Electromagnetic Flow) has potential for applications such as detection of PAD. The method utilizes the relationship between blood flow rate and tissue temperature increase during exposure to radio frequency (RF) energy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!