Nestedness refers to the structural property of complex networks that the neighborhood of a given node is a subset of the neighborhoods of better-connected nodes. Following the seminal work by Patterson and Atmar (1986), ecologists have been long interested in revealing the configuration of maximal nestedness of spatial and interaction matrices of ecological communities. In ecology, the BINMATNEST genetic algorithm can be considered as the state-of-the-art approach for this task. On the other hand, the fitness-complexity ranking algorithm has been recently introduced in the economic complexity literature with the original goal to rank countries and products in World Trade export networks. Here, by bringing together quantitative methods from ecology and economic complexity, we show that the fitness-complexity algorithm is highly effective in the nestedness maximization task. More specifically, it generates matrices that are more nested than the optimal ones by BINMATNEST for 61.27% of the analyzed mutualistic networks. Our findings on ecological and World Trade data suggest that beyond its applications in economic complexity, the fitness-complexity algorithm has the potential to become a standard tool in nestedness analysis.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512329 | PMC |
http://dx.doi.org/10.3390/e20100768 | DOI Listing |
PLoS One
November 2021
School of Computing Science, University of Glasgow, Glasgow, United Kingdom.
The Economic Fitness Index describes industrial completeness and comprehensively reflects product diversification with competitiveness and product complexity in production globalization. The Fitness-Complexity Algorithm offers a scientific approach to predicting GDP and obtains fruitful results. As a recursion algorithm, the non-linear iteration processes give novel insights into product complexity and country fitness without noise data.
View Article and Find Full Text PDFEntropy (Basel)
January 2019
Faculty of Computer and Software Engineering, Huaiyin Institute of Technology, Huaian 23303, China.
GDP is a classic indicator of the extent of national economic development. Research based on the World Trade Network has found that a country's GDP depends largely on the products it exports. In order to increase the competitiveness of a country and further increase its GDP, a crucial issue is finding the right direction to upgrade the industry so that the country can enhance its competitiveness.
View Article and Find Full Text PDFEntropy (Basel)
October 2018
URPP Social Networks, University of Zurich, CH-8050 Zurich, Switzerland.
Nestedness refers to the structural property of complex networks that the neighborhood of a given node is a subset of the neighborhoods of better-connected nodes. Following the seminal work by Patterson and Atmar (1986), ecologists have been long interested in revealing the configuration of maximal nestedness of spatial and interaction matrices of ecological communities. In ecology, the BINMATNEST genetic algorithm can be considered as the state-of-the-art approach for this task.
View Article and Find Full Text PDFSci Rep
November 2017
DIG, Politecnico di Milano, and CADS, Center for Analysis, Decisions, and Society, Milano, 20156, Italy.
Complex economic systems can often be described by a network, with nodes representing economic entities and edges their interdependencies, while network centrality is often a good indicator of importance. Recent publications have implemented a nonlinear iterative Fitness-Complexity (FC) algorithm to measure centrality in a bipartite trade network, which aims to represent the 'Fitness' of national economies as well as the 'Complexity' of the products being traded. In this paper, we discuss this methodological approach and conclude that further work is needed to identify stable and reliable measures of fitness and complexity.
View Article and Find Full Text PDFAdapting methods from complex system analysis, this paper analyzes the features of the complex relationship between wage inequality and the development and industrialization of a country. Development is understood as a combination of a monetary index, GDP per capita, and a recently introduced measure of a country's economic complexity: Fitness. Initially the paper looks at wage inequality on a global scale, over the time period 1990-2008.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!