Non-Gaussian Systems Control Performance Assessment Based on Rational Entropy.

Entropy (Basel)

Department of Missile Engineering, Army Engineering University, Shijiazhuang 050003, China.

Published: May 2018

Control loop Performance Assessment (CPA) plays an important role in system operations. Stochastic statistical CPA index, such as a minimum variance controller (MVC)-based CPA index, is one of the most widely used CPA indices. In this paper, a new minimum entropy controller (MEC)-based CPA method of linear non-Gaussian systems is proposed. In this method, probability density function (PDF) and rational entropy (RE) are respectively used to describe the characteristics and the uncertainty of random variables. To better estimate the performance benchmark, an improved EDA algorithm, which is used to estimate the system parameters and noise PDF, is given. The effectiveness of the proposed method is illustrated through case studies on an ARMAX system.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512851PMC
http://dx.doi.org/10.3390/e20050331DOI Listing

Publication Analysis

Top Keywords

non-gaussian systems
8
performance assessment
8
rational entropy
8
proposed method
8
cpa
5
systems control
4
control performance
4
assessment based
4
based rational
4
entropy control
4

Similar Publications

Wignerian symplectic covariance approach to the interaction-time problem.

Sci Rep

December 2024

Faculty of Physics and Applied Computer Science, AGH University of Krakow, al. Mickiewicza 30, 30-059, Kraków, Poland.

The concept of the symplectic covariance property of the Wigner distribution function and the symplectic invariance of the Wigner-Rényi entropies has been leveraged to estimate the interaction time of the moving quantum state in the presence of an absolutely integrable time-dependent potential. For this study, the considered scattering centre is represented initially by the Gaussian barrier. Two modifications of this potential energy are considered: a sudden change from barrier to barrier and from barrier to well.

View Article and Find Full Text PDF

A generalized maximum correntropy based constraint adaptive filtering: Constraint-forcing and performance analyses.

ISA Trans

December 2024

School of Information and Communication Engineering, University of Electronic Science and Technology of China, Chengdu, Sichuan 611731, PR China. Electronic address:

The quadratic cost functions, exemplified by mean-square-error, often exhibit limited robustness and flexibility when confronted with impulsive noise contamination. In contrast, the generalized maximum correntropy (GMC) criterion, serving as a robust nonlinear similarity measure, offers superior performance in such scenarios. In this paper, we develop a recursive constrained adaptive filtering algorithm named recursive generalized maximum correntropy with a forgetting factor (FF-RCGMC).

View Article and Find Full Text PDF

Heat production in a stochastic system with nonlinear time-delayed feedback.

Phys Rev E

November 2024

Institut für Theoretische Physik, Technische Universität Berlin, Hardenbergstraße 36, D-10623 Berlin, Germany.

Using the framework of stochastic thermodynamics we study heat production related to the stochastic motion of a particle driven by repulsive, nonlinear, time-delayed feedback. Recently it has been shown that this type of feedback can lead to persistent motion above a threshold in parameter space [R. A.

View Article and Find Full Text PDF

As the temperature decreases, rigid anisotropic molecules that usually incorporate polar groups, aromatic rings or multiple bonds, orient along a common direction, eventually forming liquid-crystalline phases under specific thermodynamic conditions. This study explores the phase behavior and dynamics of board-shaped mesogens with a 1,4,5,8-tetraphenyl-anthraquinone core and four lateral arms forming an oligo(phenyleneethynylene) scaffold. These molecules are promising candidates for forming the elusive biaxial nematic phase.

View Article and Find Full Text PDF

Brownian non-Gaussian polymer diffusion in non-static media.

Chaos

December 2024

School of Mathematics and Statistics, State Key Laboratory of Natural Product Chemistry, Lanzhou University, Lanzhou 730000, China.

In nature, essentially, almost all the particles move irregularly in non-static media. With the advance of observation techniques, various kinds of new dynamical phenomena are detected, e.g.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!