Irreversibility and Action of the Heat Conduction Process.

Entropy (Basel)

Key Laboratory for Thermal Science and Power Engineering of Ministry of Education, Department of Engineering Mechanics, Tsinghua University, Beijing 100084, China.

Published: March 2018

Irreversibility (that is, the "one-sidedness" of time) of a physical process can be characterized by using Lyapunov functions in the modern theory of stability. In this theoretical framework, entropy and its production rate have been generally regarded as Lyapunov functions in order to measure the irreversibility of various physical processes. In fact, the Lyapunov function is not always unique. In the represent work, a rigorous proof is given that the entransy and its dissipation rate can also serve as Lyapunov functions associated with the irreversibility of the heat conduction process without the conversion between heat and work. In addition, the variation of the entransy dissipation rate can lead to Fourier's heat conduction law, while the entropy production rate cannot. This shows that the entransy dissipation rate, rather than the entropy production rate, is the unique action for the heat conduction process, and can be used to establish the finite element method for the approximate solution of heat conduction problems and the optimization of heat transfer processes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512721PMC
http://dx.doi.org/10.3390/e20030206DOI Listing

Publication Analysis

Top Keywords

heat conduction
20
conduction process
12
lyapunov functions
12
entropy production
12
production rate
12
entransy dissipation
12
dissipation rate
12
action heat
8
heat
7
rate
6

Similar Publications

Digestion of food proteins: the role of pepsin.

Crit Rev Food Sci Nutr

January 2025

Riddet Institute, Massey University, Palmerston North, New Zealand.

The nutritive value of a protein is determined not only by its amino acid composition, but also by its digestibility in the gastrointestinal tract. The interaction between proteins and pepsin in the gastric stage is the first step and plays an important role in protein hydrolysis. Moreover, it affects the amino acid release rates and the allergenicity of the proteins.

View Article and Find Full Text PDF

Range and accuracy of in-plane anisotropic thermal conductivity measurement using the laser-based Ångstrom method.

Rev Sci Instrum

January 2025

Birck Nanotechnology Center and the School of Mechanical Engineering, Purdue University, West Lafayette, Indiana 47907, USA.

High heat fluxes in electronic devices must be effectively dissipated to prevent local hotspots, which are critical for long-term device reliability. In particular, advanced semiconductor packaging trends toward thin form factor products increase the need for understanding and improving in-plane conduction heat spreading in anisotropic materials. The 2D laser-based Ångstrom method, an extension of traditional Ångstrom and lock-in thermography techniques, measures in-plane thermal properties of anisotropic sheet-like materials.

View Article and Find Full Text PDF

This study examines heat transfer and nanofluid-enhanced blood flow behaviour in stenotic arteries under inflammatory conditions, addressing critical challenges in cardiovascular health. The blood, treated as a Newtonian fluid, is augmented with gold nanoparticles to improve thermal conductivity and support drug delivery applications. A hybrid methodology combining finite element method (FEM) for numerical modelling and artificial neural networks (ANN) for stability prediction provides a robust analytical framework.

View Article and Find Full Text PDF

Lifestyle-related diseases, such as atherosclerosis and diabetes, are now considered to be a series of diseases caused by chronic inflammation. Adipose tissue is considered to be an endocrine organ that not only plays a role in lipid storage, heat production, and buffering, but also produces physiologically active substances and is involved in chronic inflammation. Perivascular adipose tissue (PVAT) surrounding blood vessels similarly produces inflammatory and anti-inflammatory physiologically active substances that act on blood vessels either directly or via the bloodstream.

View Article and Find Full Text PDF

The effects of aerobic exercise and heat stress on the unbound fraction of caffeine.

Front Physiol

January 2025

Human Physiology Research Unit, Faculty of Kinesiology and Physical Education, University of Toronto, Toronto, ON, Canada.

Introduction: The fraction of drug circulating in the blood that is not bound to plasma proteins ( ) is considered pharmacologically active since it readily binds to its receptor. evidence suggests that changes in temperature and pH affect the affinity of drug binding to plasma proteins, resulting in changes in . In light of the well-established effects of exercise on body temperature and blood pH, we investigated whether an increase in blood temperature and decrease in pH facilitated through passive heating and exercise translated to a change in the of caffeine.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!