In this paper, the problem of low probability of intercept (LPI)-based radar waveform design for distributed multiple-radar system (DMRS) is studied, which consists of multiple radars coexisting with a wireless communication system in the same frequency band. The primary objective of the multiple-radar system is to minimize the total transmitted energy by optimizing the transmission waveform of each radar with the communication signals acting as interference to the radar system, while meeting a desired target detection/characterization performance. Firstly, signal-to-clutter-plus-noise ratio (SCNR) and mutual information (MI) are used as the practical metrics to evaluate target detection and characterization performance, respectively. Then, the SCNR- and MI-based optimal radar waveform optimization methods are formulated. The resulting waveform optimization problems are solved through the well-known bisection search technique. Simulation results demonstrate utilizing various examples and scenarios that the proposed radar waveform design schemes can evidently improve the LPI performance of DMRS without interfering with friendly communications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512714PMC
http://dx.doi.org/10.3390/e20030197DOI Listing

Publication Analysis

Top Keywords

radar waveform
16
waveform design
12
low probability
8
distributed multiple-radar
8
wireless communication
8
multiple-radar system
8
waveform optimization
8
radar
6
waveform
6
probability intercept-based
4

Similar Publications

A parallelized field-programmable gate array (FPGA) architecture is proposed to realize an ultra-fast, compact, and low-cost dual-channel ultra-wideband (UWB) pulsed-radar system. This approach resolves the main shortcoming of current FPGA-based radars, namely their low processing throughput, which leads to a significant loss of data provided by the radar receiver. The architecture is integrated with an in-house UWB pulsed radar operating at a sampling rate of 20 gigasamples per second (GSa/s).

View Article and Find Full Text PDF

The integration of radar technology into smart furniture represents a practical approach to health monitoring, circumventing the concerns regarding user convenience and privacy often encountered by conventional smart home systems. Radar technology's inherent non-contact methodology, privacy-preserving features, adaptability to diverse environmental conditions, and high precision characteristics collectively establish it a compelling alternative for comprehensive health monitoring within domestic environments. In this paper, we introduce a millimeter (mm)-wave radar system positioned strategically behind a seat, featuring an algorithm capable of identifying unique cardiac waveform patterns for healthy subjects.

View Article and Find Full Text PDF

Modern radar technology requires high-quality signals and detection performance. However, traditional frequency-modulated continuous wave (FMCW) radar often has poor anti-jamming capabilities, and the high sampling rates associated with large time-bandwidth product signals can lead to increased system hardware costs and reduced data processing efficiency. This paper constructed a composite radar waveform based on noise frequency modulation (NFM) and linear frequency modulation (LFM) signals, enhancing the signal's complexity and anti-jamming capability.

View Article and Find Full Text PDF

When there are time division multiple access (TDMA) signals with large bandwidth, waveform aliasing, and fast frequency-hopping in space, current methods have difficulty achieving the accurate localization of radiation sources and signal-sorting from multiple network stations. To solve the above problems, a distributed passive positioning and network stations sorting method for broadband frequency-hopping signals based on two-level parameter estimation and joint clustering is proposed in this paper. Firstly, a two-stage filtering structure is designed to achieve control filtering for each frequency point.

View Article and Find Full Text PDF

The importance of information gathering is emphasized to minimize casualties and economic losses in warfare. Through electronic warfare, which utilizes electromagnetic waves, it is possible to discern the enemy's intentions and respond accordingly, thereby leading the battle advantageously. Consequently, related research is actively underway.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!