Cerebral palsy is a physical impairment stemming from a brain lesion at perinatal time, most of the time resulting in gait abnormalities: the first cause of severe disability in childhood. Gait study, and instrumental gait analysis in particular, has been receiving increasing attention in the last few years, for being the complex result of the interactions between different brain motor areas and thus a proxy in the understanding of the underlying neural dynamics. Yet, and in spite of its importance, little is still known about how the brain adapts to cerebral palsy and to its impaired gait and, consequently, about the best strategies for mitigating the disability. In this contribution, we present the hitherto first analysis of joint kinematics data using permutation entropy, comparing cerebral palsy children with a set of matched control subjects. We find a significant increase in the permutation entropy for the former group, thus indicating a more complex and erratic neural control of joints and a non-trivial relationship between the permutation entropy and the gait speed. We further show how this information theory measure can be used to train a data mining model able to forecast the child's condition. We finally discuss the relevance of these results in clinical applications and specifically in the design of personalized medicine interventions.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7512275 | PMC |
http://dx.doi.org/10.3390/e20010077 | DOI Listing |
Sensors (Basel)
December 2024
College of Railway Transportation, Hunan University of Technology, Zhuzhou 412007, China.
Rail corrugation intensifies wheel-rail vibrations, often leading to damage in vehicle-track system components within affected sections. This paper proposes a novel method for identifying rail corrugation, which combines Complete Ensemble Empirical Mode Decomposition with Adaptive Noise (CEEMDAN), permutation entropy (PE), and Smoothed Pseudo Wigner-Ville Distribution (SPWVD). Initially, vertical acceleration data from the axle box are decomposed using CEEMDAN to extract intrinsic mode functions (IMFs) with distinct frequencies.
View Article and Find Full Text PDFSensors (Basel)
December 2024
School of Geology Engineering and Geomatics, Chang'an University, 126 Yanta Road, Xi'an 710054, China.
To eliminate the noise interference caused by continuous external environmental disturbances on the rotor signals of a maglev gyroscope, this study proposes a noise reduction method that integrates an adaptive particle swarm optimization variational modal decomposition algorithm with a strategy for error compensation of the trend term in reconstructed signals, significantly improving the azimuth measurement accuracy of the gyroscope torque sensor. The optimal parameters for the variational modal decomposition algorithm were determined using the adaptive particle swarm optimization algorithm, allowing for the accurate decomposition of noisy rotor signals. Additionally, using multi-scale permutation entropy as a criterion for discriminant, the signal components were filtered and summed to obtain the denoised reconstructed signal.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Faculty of Information Engineering, Quzhou College of Technology, Quzhou 324000, China.
Rolling bearings, as critical components of rotating machinery, significantly influence equipment reliability and operational efficiency. Accurate fault diagnosis is therefore crucial for maintaining industrial production safety and continuity. This paper presents a new fault diagnosis method based on FCEEMD multi-complexity low-dimensional features and directed acyclic graph LSTSVM.
View Article and Find Full Text PDFEntropy (Basel)
November 2024
Instituto de Física Interdisciplinar y Sistemas Complejos (IFISC, UIB-CSIC), Campus Universitat de les Illes Balears, E-07122 Palma de Mallorca, Spain.
This study implements the permutation Jensen-Shannon distance as a metric for discerning ordinal patterns and similarities across multiple temporal scales in time series data. Initially, we present a numerically controlled analysis to validate the multiscale capabilities of this method. Subsequently, we apply our methodology to a complex photonic system, showcasing its practical utility in a real-world scenario.
View Article and Find Full Text PDFSci Rep
January 2025
Strathclyde Institute of Education, University of Strathclyde, Lord Hope Building, Glasgow, G4 0LT, UK.
Computational analysis of infant movement has significant potential to reveal markers of developmental health. We report two studies employing dynamic analyses of motor kinematics and motor behaviours, which characterise movement at two levels, in 9-month-old infants. We investigate the effect of preterm birth (< 33 weeks of gestation) and the effect of changing emotional and social-interactive contexts in the still-face paradigm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!