As the industrial waste from blast furnace ironmaking, air-cooled blast furnace slag (ACBFS) puts a lot of pressure on the environment. It is becoming more and more urgent to deal with the increasing ACBFS. In this study, the concept of "full-volume slag alkali-activated mortars (FSAM)" is proposed using ground granulated water-cooled blast furnace slag (GGBS) as aluminosilicate material and ACBFS to replace machine-made sand, aiming to solve the current situation of increasing scarcity of natural resources. The characteristics of ACBFS are investigated, and its stability and heavy metal leaching all meet the requirements as a building material. The results show that the flowability and mechanical properties of FSAM are significantly enhanced with the substitution rate of ACBFS increases. Meanwhile, the incorporation of ACBFS is also beneficial to improve the compactness of the microstructure of the mortar, thereby improving the impermeability (Water, ion and gas) of FSAM. In addition, the specimen mixed with ACBFS showed good high temperature resistance due to the porous feature of the aggregate. Furthermore, using a small amount of limestone powder to replace GGBS can slightly improve the performance of FSAM. Therefore, ACBFS is recommended to be used in FSAM, which meets safety, cost and environmental benefits.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.123983 | DOI Listing |
Materials (Basel)
January 2025
Cangzhou Municipal Engineering Company Limited, Cangzhou 061000, China.
To improve the mechanical and durability properties of low liquid limit soil, an eco-friendly, all-solid, waste-based stabilizer (GSCFC) was proposed using five different industrial solid wastes: ground granulated blast-furnace slag (GGBS), steel slag (SS), coal fly ash (CFA), flue-gas desulfurization (FGD) gypsum, and carbide slag (CS). The mechanical and durability performance of GSCFC-stabilized soil were evaluated using unconfined compressive strength (UCS), California bearing ratio (CBR), and freeze-thaw and wet-dry cycles. The Rietveld method was employed to analyze the mineral phases in the GSCFC-stabilized soil.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Civil Engineering, Engineering Faculty, Firat University, 23100 Elazig, Türkiye.
In this study, the usability of construction and demolition waste (CDW) aggregates as filling when stabilized with alkaline activator solution (AAS) and blast furnace slag (BFS) was investigated. The initial stage of this study involved determining the engineering properties of CDW by laboratory experiments. In the next stage, modified Proctor tests were performed to investigate the compaction behavior of CDW, to which 5% to 30% BFS was added with water or AAS.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Guizhou Provincial Architectural Design & Research Institute Co., Ltd., Guiyang 550025, China.
Electrolytic manganese residue (EMR) is a solid waste generated during the production of electrolytic manganese metal through wet metallurgy, accumulating in large quantities and causing significant environment pollution. Due to its high sulfate content, EMR can be utilized to prepare supersulfate cement when combined with Ground Granulated Blast furnace Slag (GGBS). In this process, GGBS serves as the primary raw material, EMR acts as the sulfate activator, and CaO powder, along with trace amounts of cement, functions as the alkali activator.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Materials Science and Engineering, KTH Royal Institute of Technology, 10044, Stockholm, Sweden.
In the blast furnace and basic oxygen furnace route, pig iron and steel scrap are used as resources for steel production. The scrap content can consist of many different types of scrap varying in origin and composition. This makes it difficult to compile the scrap mix and predict the future chemical analysis in the converter.
View Article and Find Full Text PDFSci Rep
January 2025
Sustainability Solutions Research Lab, Faculty of Engineering, University of Pannonia, Egyetem Str. 10, Veszprém H, 8200, Veszprém, Hungary.
This study endeavors to tackle the energy requirements of the building sector by employing passive design strategies. However, there exists a dearth of comprehension regarding the energy efficiency performance of foamed alkali-activated materials. To bridge this research gap, the study proposes a solution in the form of a thermally proficient wall material crafted from ceramic tile dust (CTD), class C fly ash (FA), and Ground Granulated Blast-Furnace Slag (GGBS), all of which are industrial by-products.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!