Waste rocks generated from tunnel excavation contain the metalloid selenium (Se) and its concentration sometimes exceeds the environmental standards. The possibility and effectiveness of dissolved Se removal by the indigenous microorganisms are unknown. Chemical analyses and high-throughput 16S rRNA gene sequencing were implemented to investigate the functional and structural responses of the rock microbial communities to the Se and lactate amendment. During anaerobic incubation of the amended rock slurries from two distinct sites, dissolved Se concentrations decreased significantly, which coincided with lactate degradation to acetate and/or propionate. Sequencing indicated that relative abundances of Desulfosporosinus burensis increased drastically from 0.025 % and 0.022% to 67.584% and 63.716 %, respectively, in the sites. In addition, various Desulfosporosinus spp., Symbiobacterium-related species and Brevibacillus ginsengisoli, as well as the Se(VI)-reducing Desulfitobacterium hafniense, proliferated remarkably. They are capable of incomplete lactate oxidation to acetate as only organic metabolite, strongly suggesting their involvement in dissimilatory Se reduction. Furthermore, predominance of Pelosinus fermentans that ferments lactate to propionate and acetate implied that Se served as the electron sink for its fermentative lactate degradation. These results demonstrated that the indigenous microorganisms played vital roles in the lactate-stimulated Se reduction, leading to the biological Se immobilization treatment of waste rocks.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jhazmat.2020.123908 | DOI Listing |
Sci Rep
January 2025
School of Urban Planning and Municipal Engineering, Xi'an Polytechnic University, Xi'an, 710048, China.
With the increase in coal mining depths, soft and fractured roadway surrounding rocks require grouting and a sprayed protective layer for maintenance. Simultaneously, extensive accumulation of coal gangue causes diverse environmental issues. To enhance on-site coal gangue utilization, this study replaced river sand and cement with coal gangue to develop a novel cement-based mortar for supporting coal mine roadways.
View Article and Find Full Text PDFSci Data
January 2025
Department of Botany and Evolutionary Ecology, University of Warmia and Mazury in Olsztyn, Plac Łódzki 1, Olsztyn, 10-719, Poland.
Riccia sorocarpa Bisch., commonly known as common crystalwort, is a plant belonging to the Marchantiales order with a cosmopolitan distribution among a wide range of habitats: fields, gardens, waste ground, on paths, cliff tops, and thin soil over rocks or by water bodies. However, research into the genetic aspects of this species is limited.
View Article and Find Full Text PDFJ Environ Radioact
January 2025
Health Physics Division, Bhabha Atomic Research Centre, Mumbai, 400085, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400094, India.
India's road construction is vital for its infrastructure growth, requiring approximately 20,000 tons of high-quality aggregates per kilometer - materials that are increasingly scarce, leading to higher costs and delays. The industrial sector, a cornerstone of the Indian economy, also struggles with waste management. Earlier studies suggested that industrial waste can be used in road construction materials however, the radiological considerations were not focused.
View Article and Find Full Text PDFHeliyon
December 2024
Baoji Northwest Nonferrous Metal Erlihe Mining Co., Ltd., Baoji, 721700, China.
The restoration and treatment of underground voids have always posed significant challenges for constructing environmentally sustainable mines. To investigate the effectiveness of a combined approach involving waste rock filling and grouting roof filling as treatment methods to ensure safety and stability in mining voids, this study employed a comprehensive dynamic analysis approach. It specifically focused on an individual underground metal mine cavity by integrating numerical simulation analysis techniques with onsite displacement monitoring methods.
View Article and Find Full Text PDFEnviron Geochem Health
December 2024
Research Institute of Mines and Environment (RIME), Université du Québec en Abitibi-Témiscamingue (UQAT), 445 Boul. de l'Université, Rouyn-Noranda, QC, J9X 5E4, Canada.
Phosphate mines produce large quantities of waste rock. These waste rocks are mixed and managed on the surface as large unrestored piles, which makes them difficult to rehabilitate. They primarily comprise carbonates, clays, marls, and cherts (flints).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!