Shade caused by the proximity of neighboring vegetation triggers a set of acclimation responses to either avoid or tolerate shade. Comparative analyses between the shade-avoider Arabidopsis thaliana and the shade-tolerant Cardamine hirsuta revealed a role for the atypical basic-helix-loop-helix LONG HYPOCOTYL IN FR 1 (HFR1) in maintaining the shade tolerance in C. hirsuta, inhibiting hypocotyl elongation in shade and constraining expression profile of shade-induced genes. We showed that C. hirsuta HFR1 protein is more stable than its A. thaliana counterpart, likely due to its lower binding affinity to CONSTITUTIVE PHOTOMORPHOGENIC 1 (COP1), contributing to enhance its biological activity. The enhanced HFR1 total activity is accompanied by an attenuated PHYTOCHROME INTERACTING FACTOR (PIF) activity in C. hirsuta. As a result, the PIF-HFR1 module is differently balanced, causing a reduced PIF activity and attenuating other PIF-mediated responses such as warm temperature-induced hypocotyl elongation (thermomorphogenesis) and dark-induced senescence. By this mechanism and that of the already-known of phytochrome A photoreceptor, plants might ensure to properly adapt and thrive in habitats with disparate light amounts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7780144PMC
http://dx.doi.org/10.15252/embj.2019104273DOI Listing

Publication Analysis

Top Keywords

hypocotyl elongation
8
pif activity
8
activity
5
shade
5
adjustment pif7-hfr1
4
pif7-hfr1 transcriptional
4
transcriptional module
4
module activity
4
activity controls
4
controls plant
4

Similar Publications

Circadian clocks facilitate organisms' adaptation to the day-night environmental cycle. Some of the component genes of the clocks ("clock genes") respond directly to changes in ambient light, supposedly allowing the clocks to synchronize to and/or oscillate robustly in the environmental cycle. In the dicotyledonous model plant Arabidopsis thaliana, the clock genes CIRCADIAN CLOCK ASSOCIATED 1 (CCA1), LATE ELONGATED HYPOCOTYL (LHY) and PSEUDO-RESPONSE REGULATOR 9 (PRR9) show transient expression in response to the morning light.

View Article and Find Full Text PDF

Brassinosteroids (BRs) are plant steroid hormones that regulate plant development and environmental responses. BIL1/BZR1, a master transcription factor that regulates approximately 3000 genes in the BR signaling pathway, is transported to the nucleus from the cytosol in response to BR signaling; however, the molecular mechanism underlying this process is unknown. Here, we identify a novel BR signaling factor, BIL7, that enhances plant growth and positively regulates the nuclear accumulation of BIL1/BZR1 in Arabidopsis thaliana.

View Article and Find Full Text PDF

TANDEM ZINC-FINGER/PLUS3: a multifaceted integrator of light signaling.

Trends Plant Sci

December 2024

School of Molecular Biosciences, College of Medical, Veterinary, and Life Sciences, University of Glasgow, Glasgow G12 8QQ, UK. Electronic address:

TANDEM ZINC-FINGER/PLUS3 (TZP) is a nuclear-localized protein with multifaceted roles in modulating plant growth and development under diverse light conditions. The unique combination of two intrinsically disordered regions (IDRs), two zinc-fingers (ZFs), and a PLUS3 domain provide a platform for interactions with the photoreceptors phytochrome A (phyA) and phyB, light signaling components, and nucleic acids. TZP controls flowering and hypocotyl elongation by regulating gene expression and protein abundance in a blue, red, or far-red light-specific context.

View Article and Find Full Text PDF

This study revealed a substrate-level synthesis of pigment cyanidin-3-O-glucoside and the redirection of metabolomic flux in the flavonoid/anthocyanin biosynthesis pathway in poplar adventitious roots (ARs) induced by stem canker pathogens. Recently, we observed a novel allometry on poplar stems, with copious colorful adventitious roots (ARs) induced by fungal canker pathogens. Here, we reveal chemical, physiological, and molecular mechanisms of AR coloration in poplar-pathogens (Valsa sordida/Botrosphaeria dothidea) interaction system using our phloem girdling-inoculation system.

View Article and Find Full Text PDF

DET1 modulates ATAF1-repressed thermosensory elongation through ubiquitination in Arabidopsis.

Plant Cell Rep

December 2024

Solid-State Fermentation Resource Utilization Key Laboratory of Sichuan Province, Department of Agriculture Forestry and Food Engineering, Yibin University, Yibin, China.

The Arabidopsis transcription factor ATAF1 negatively regulates thermomorphogenesis by inhibiting the expression of key genes involved in thermoresponsive elongation. DET1-mediated ubiquitination promotes ATAF1 degradation. In response to warmer, non-stressful average temperatures, plants have evolved an adaptive morphologic response called thermomorphogenesis to increase their fitness.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!