Two new ring-size-varying analogues ( and ) of ipomoeassin F were synthesized and evaluated. Improved cytotoxicity (IC: from 1.8 nM) and in vitro protein translocation inhibition (IC: 35 nM) derived from ring expansion imply that the binding pocket of Sec61α (isoform 1) can accommodate further structural modifications, likely in the fatty acid portion. Streamlined preparation of the key diol intermediate enabled gram-scale production, allowing us to establish that ipomoeassin F is biologically active in vivo (MTD: ∼3 mg/kg).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7808706 | PMC |
http://dx.doi.org/10.1021/acs.joc.0c01659 | DOI Listing |
Chemistry
January 2025
The University of Manchester, Manchester Institute of Biotechnology, 131 Princess Street, M1 7DN, Manchester, UNITED KINGDOM OF GREAT BRITAIN AND NORTHERN IRELAND.
The natural product synthesis of brevione J undergoes a cascade of reactions including an oxidative desaturation and a ring-expansion. The C1-C2 desaturation of brevione B is catalyzed by the nonheme iron dioxygenase BrvJ using one molecule of O2 and a-ketoglutarate (aKG). However, whether the subsequent oxidative ring expansion reaction is also catalyzed by the same enzyme is unknown and remains controversial.
View Article and Find Full Text PDFOrg Lett
January 2025
Department of Chemistry, Xihua University, Chengdu 610039, P. R. China.
A novel approach for the synthesis of pyrone and indanone derivatives utilizing Fe(III)-catalyzed reductive radical ring expansion of olefins and cyclopropenone has been proposed. The preliminary mechanism study shows that the alkyl radical is formed by hydrogen atom transfer, which can open the tension ring and then generate the intermediate. There are two paths for the intermediate: when there is a hydroxyl group at the β-position of the olefin, the reaction produces pyrones, and otherwise 1-indanone is generated.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Key Laboratory of Cotton Breeding and Cultivation in Huang-Huai-Hai Plain, Ministry of Agriculture and Rural Affairs, Institute of Industrial Crops Shandong Academy of Agricultural Sciences, Jinan 250100, China.
The Really Interesting New Gene (RING) E3 ubiquitin ligases represent the largest class of E3 ubiquitin ligases involved in protein degradation and play a pivotal role in plant growth, development, and environmental responses. Despite extensive studies in numerous plant species, the functions of RING E3 ligases in cotton remain largely unknown. In this study, we performed systematic identification, characterization, and expression analysis of genes in cotton.
View Article and Find Full Text PDFNat Commun
January 2025
Laboratory of Structural Biochemistry, Institute of Chemistry and Biochemistry, Freie Universität Berlin, Berlin, Germany.
Many bacteriophages modulate host transcription to favor expression of their own genomes. Phage satellite P4 polarity suppression protein, Psu, a building block of the viral capsid, inhibits hexameric transcription termination factor, ρ, by presently unknown mechanisms. Our cryogenic electron microscopy structures of ρ-Psu complexes show that Psu dimers clamp two inactive, open ρ rings and promote their expansion to higher-oligomeric states.
View Article and Find Full Text PDFChemphyschem
January 2025
Universidad de Valladolid Facultad de Ciencias, Química Física y Química Inorgánica, SPAIN.
Indane-based molecules are effective scaffolds for different pharmaceutical products, so it is relevant to analyze the relation between structure and functionality in indane derivatives. Here, we have characterized the conformational landscape and molecular structure of 1-aminoindane in the gas phase using chirped-excitation Fourier-transform microwave spectroscopy and computational methods. The rotational spectrum confirmed the presence of two conformers, which were identified based on their rotational constants and 14N nuclear quadrupole coupling tensor elements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!