Ion Binding Properties and Dynamics of the 2 G-Quadruplex Using a Polarizable Force Field.

J Chem Inf Model

Department of Biochemistry and Center for Drug Discovery, Virginia Tech, 303 Engel Hall, 340 West Campus Dr., Blacksburg, Virginia 24061, United States.

Published: December 2020

G-quadruplexes (GQs) are topologically diverse, highly thermostable noncanonical nucleic acid structures that form in guanine-rich sequences in DNA and RNA. GQs are implicated in transcriptional and translational regulation and genome maintenance, and deleterious alterations to their structures contribute to diseases such as cancer. The expression of the B-cell lymphoma 2 (Bcl-2) antiapoptotic protein, for example, is under transcriptional control of a GQ in the promoter of the 2 gene. Modulation of the 2 GQ by small molecules is of interest for chemotherapeutic development but doing so requires knowledge of the factors driving GQ folding and stabilization. To develop a greater understanding of the electrostatic properties of the 2 promoter GQ, we performed molecular dynamics simulations using the Drude-2017 polarizable force field and compared relevant outcomes to the nonpolarizable CHARMM36 force field. Our simulation outcomes highlight the importance of dipole-dipole interactions in the 2 GQ, particularly during the recruitment of a bulk K ion to the solvent-exposed face of the tetrad stem. We also predict and characterize an "electronegative pocket" at the tetrad-long loop junction that induces local backbone conformational change and may induce local conformational changes at cellular concentrations of K. These outcomes suggest that moieties within the 2 GQ can be targeted by small molecules to modulate -2 GQ stability.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7775346PMC
http://dx.doi.org/10.1021/acs.jcim.0c01064DOI Listing

Publication Analysis

Top Keywords

force field
12
polarizable force
8
small molecules
8
ion binding
4
binding properties
4
properties dynamics
4
dynamics g-quadruplex
4
g-quadruplex polarizable
4
field g-quadruplexes
4
g-quadruplexes gqs
4

Similar Publications

The successful design and deployment of next-generation nuclear technologies heavily rely on thermodynamic data for relevant molten salt systems. However, the lack of accurate force fields and efficient methods has limited the quality of thermodynamic predictions from atomistic simulations. Here we propose an efficient free energy framework for computing chemical potentials, which is the central free energy quantity behind many thermodynamic properties.

View Article and Find Full Text PDF

Magnetorheological (MR) fluid (MRF) dampers, serving as fail-safe semi-active devices, exhibit nonlinear hysteresis characteristics, emphasizing the necessity for accurate modeling to formulate effective control strategies in smart systems. This paper introduces a novel stop operator-based Prandtl-Ishlinskii (PI) model, featuring a reduced parameter set (seven), designed to estimate the nonlinear hysteresis properties of a large-scale bypass MRF damper with variable stiffness capabilities under varying applied current. With only seven parameters, the model realizes current, displacement, and rate dependencies.

View Article and Find Full Text PDF

3D printing of biological tooth with multiple ordered hierarchical structures.

Mater Today Bio

February 2025

State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai, 201620, PR China.

Natural teeth fulfill functional demands by their heterogeneity. The composition and hydroxyapatite (HAp) nanostructured orientation of enamel differ from those of dentin. However, mimicking analogous materials still exhibit a significant challenge.

View Article and Find Full Text PDF

Novel D-Ribofuranosyl Tetrazoles: Synthesis, Characterization, In Vitro Antimicrobial Activity, and Computational Studies.

ACS Omega

January 2025

Applied Chemistry and Environment Laboratory, Applied Bioorganic Chemistry Team, Faculty of Science, Ibn Zohr University, Agadir 80000, Morocco.

The goal of this study was to synthesize and evaluate new antimicrobial compounds. We specifically focused on the development of 2,5-disubstituted tetrazole derivatives containing the O-methyl-2,3-O-isopropylidene-(D)-ribofuranoside groups through N-alkylation reactions. The synthesized compounds were characterized using H and C nuclear magnetic resonance (NMR) spectroscopy.

View Article and Find Full Text PDF

The Voyager 2 flyby of Uranus in 1986 revealed an unusually oblique and off-centred magnetic field. This single in situ measurement has been the basis of our interpretation of Uranus's magnetosphere as the canonical extreme magnetosphere of the solar system; with inexplicably intense electron radiation belts and a severely plasma-depleted magnetosphere. However, the role of external forcing by the solar wind has rarely been considered in explaining these observations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!