Oxidative stress and decreased tissue HSP70 are involved in the genesis of sepsis: HSP70 as a therapeutic target.

Rev Bras Ter Intensiva

Grupo de Pesquisa em Fisiologia, Departamento de Ciências da Vida, Universidade Regional do Noroeste do Estado do Rio Grande do Sul - Ijuí (RS), Brasil.

Published: November 2021

Sepsis is a systemic infection that causes multiple organ dysfunction. HSP70 is a protein responsive to cell stress, in particular oxidative stress. Therefore, this literature review sought to investigate the roles of HSP70 and oxidative stress in the pathophysiology of sepsis and the possibility of HSP70 as a therapeutic target. HSP70 exerts a protective effect when located in cells (iHSP70), and its decrease, as well as its increase in the extracellular environment (eHSP70), under oxidative stress is a biomarker of sepsis severity. In addition, therapies that increase iHSP70 and treatment with HSP70 promote sepsis improvement.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7853686PMC
http://dx.doi.org/10.5935/0103-507X.20200084DOI Listing

Publication Analysis

Top Keywords

oxidative stress
16
hsp70 therapeutic
8
therapeutic target
8
hsp70
7
sepsis
5
oxidative
4
stress decreased
4
decreased tissue
4
tissue hsp70
4
hsp70 involved
4

Similar Publications

Drug Development.

Alzheimers Dement

December 2024

AIMST University, Bedong, Kedah, Malaysia.

Background: Senile dementia (SD) is a deteriorative organic brain disorder and it comprises Alzheimer's disease (AD) as a major variant. SD is shown impairment of mental capacities whereas AD is degeneration of neurons. According to World Health Organization (WHO) report; more than 55 million peoples have dementia and it is raising 10 million new cases every year.

View Article and Find Full Text PDF

Background: Developing drugs for treating Alzheimer's disease (AD) has been extremely challenging and costly due to limited knowledge on underlying biological mechanisms and therapeutic targets. Repurposing drugs or their combination has shown potential in accelerating drug development due to the reduced drug toxicity while targeting multiple pathologies.

Method: To address the challenge in AD drug development, we developed a multi-task machine learning pipeline to integrate a comprehensive knowledge graph on biological/pharmacological interactions and multi-level evidence on drug efficacy, to identify repurposable drugs and their combination candidates RESULT: Using the drug embedding from the heterogeneous graph representation model, we ranked drug candidates based on evidence from post-treatment transcriptomic patterns, mechanistic efficacy in preclinical models, population-based treatment effect, and Phase 2/3 clinical trials.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

School of Medical & Allied Sciences, K.R. Mangalam University, Gurugram, Haryana, India.

Background: Parkinson's disease is an hypokinetic disorder characterized by selective loss of dopaminergic in substantia nigra pars compacta (SNPc) region of mid-brain. Dopaminergic degeneration of neurons is considered to be due to oxidative stress, neuroinflammation, neurons mitochondrial dysfunction and glutamate excitotoxicity etc. Filgrastim has been reported to produce anti-oxidant, anti-inflammatory and neuromodulatory actions in previous studies.

View Article and Find Full Text PDF

Background: The impact of probiotics as gut and immunological modulator in restoring gut microbial balance and immune cells expression have generated much attention in the health sector. Its inhibitory effect on bacterial translocation and associated neural inflammatory processes has been reported. However, there is scarcity of data on its neuroprotective impact against neuroinflammation-associated neurodegeneration and memory impairment.

View Article and Find Full Text PDF

Drug Development.

Alzheimers Dement

December 2024

Yonsei University, Incheon, Incheon, Korea, Republic of (South).

Background: Cyclin Y (CCNY) is a member of cyclin protein family inhibiting long-term synaptic plasticity, which is related to the learning and memory function in neuronal system. Recently, CCNY has been reported to associate with the cognitive deficits in Alzheimer's disease (AD).

Method: In this study, we discovered PFTAIRE peptide to diminish CCNY protein level and to ameliorate cognitive dysfunction in AD.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!