AI Article Synopsis

  • Cell-derived extracellular vesicles (EVs) play a key role in communication between cells by transferring molecular cargo, including microRNAs (miRNAs), which can influence immune cell functions in mammals.
  • Research focused on Atlantic salmon leukocytes showed significant changes in cell characteristics and miRNA profiles as the cells transitioned from a "monocyte-like" state to a "macrophage-like" state over five days in culture.
  • The study successfully isolated EVs and identified 19 differentially enriched miRNAs associated with immune response, suggesting selective packaging and highlighting the potential for using these miRNAs as biomarkers for immune cell function and fish health.

Article Abstract

Cell-derived extracellular vesicles (EVs) participate in cell-cell communication transfer of molecular cargo including genetic material like miRNAs. In mammals, it has previously been established that EV-mediated transfer of miRNAs can alter the development or function of immune cells, such as macrophages. Our previous research revealed that Atlantic salmon head kidney leukocytes (HKLs) change their morphology, phagocytic ability and miRNA profile from primarily "monocyte-like" at Day 1 to primarily "macrophage-like" at Day 5 of culture. Therefore, we aimed to characterize the miRNA cargo packaged in EVs released from these two cell populations. We successfully isolated EVs from Atlantic salmon HKL culture supernatants using the established Vn96 peptide-based pull-down. Isolation was validated using transmission electron microscopy, nanoparticle tracking analysis, and Western blotting. RNA-sequencing identified 19 differentially enriched (DE) miRNAs packaged in Day 1 versus Day 5 EVs. Several of the highly abundant miRNAs, including those that were DE (e.g. ssa-miR-146a, ssa-miR-155 and ssa-miR-731), were previously identified as DE in HKLs and are associated with macrophage differentiation and immune response in other species. Interestingly, the abundance relative of the miRNAs in EVs, including the most abundant miRNA (ssa-miR-125b), was different than the miRNA abundance in HKLs, indicating selective packaging of miRNAs in EVs. Further study of the miRNA cargo in EVs derived from fish immune cells will be an important next step in identifying EV biomarkers useful for evaluating immune cell function, fish health, or response to disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7686242PMC
http://dx.doi.org/10.3389/fimmu.2020.587931DOI Listing

Publication Analysis

Top Keywords

atlantic salmon
12
extracellular vesicles
8
immune cells
8
mirna cargo
8
mirnas evs
8
evs
7
mirnas
6
mirna
5
characterization mirnas
4
mirnas extracellular
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!