The dynamic regulation of DNA methylation in postmitotic neurons is necessary for memory formation and other adaptive behaviors. Ten-eleven translocation 1 (TET1) plays a part in these processes by oxidizing 5-methylcytosine (5mC) to 5-hydroxymethylcytosine (5hmC), thereby initiating active DNA demethylation. However, attempts to pinpoint its exact role in the nervous system have been hindered by contradictory findings, perhaps due in part, to a recent discovery that two isoforms of the gene are differentially expressed from early development into adulthood. Here, we demonstrate that both the shorter transcript ( ) encoding an N-terminally truncated TET1 protein and a full-length ( ) transcript encoding canonical TET1 are co-expressed in the adult mouse brain. We show that is the predominantly expressed isoform and is highly enriched in neurons, whereas is generally expressed at lower levels and more abundant in glia, suggesting their roles are at least partially cell type-specific. Using viral-mediated, isoform and neuron-specific molecular tools, we find that the individual repression of each transcript leads to the dysregulation of unique gene ensembles and contrasting changes in basal synaptic transmission. In addition, repression enhances, while impairs, hippocampal-dependent memory in male mice. Together, our findings demonstrate that each isoform serves a distinct role in the mammalian brain. In the brain, activity-dependent changes in gene expression are required for the formation of long-term memories. DNA methylation plays an essential role in orchestrating these learning-induced transcriptional programs by influencing chromatin accessibility and transcription factor binding. Once thought of as a stable epigenetic mark, DNA methylation is now known to be impermanent and dynamically regulated, driving neuroplasticity in the brain. We found that , a member of the ten-eleven translocation (TET) family of enzymes that mediates removal of DNA methyl marks, is expressed as two separate isoforms in the adult mouse brain and that each differentially regulates gene expression, synaptic transmission and memory formation. Together, our findings demonstrate that each isoform serves a distinct role in the CNS.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7842754PMC
http://dx.doi.org/10.1523/JNEUROSCI.1821-20.2020DOI Listing

Publication Analysis

Top Keywords

gene expression
12
synaptic transmission
12
dna methylation
12
expression synaptic
8
transmission memory
8
mammalian brain
8
memory formation
8
ten-eleven translocation
8
transcript encoding
8
adult mouse
8

Similar Publications

Tissue nanotransfection-based endothelial PLCγ2-targeted epigenetic gene editing in vivo rescues perfusion and diabetic ischemic wound healing.

Mol Ther

January 2025

Department of Surgery, McGowan Institute for Regenerative Medicine, University of Pittsburgh, Pittsburgh, PA 15219, United States; Department of Surgery, Indiana Center for Regenerative Medicine and Engineering, Indiana University School of Medicine, Indianapolis, IN 46202, United States. Electronic address:

Diabetic wounds are complicated by underlying peripheral vasculopathy. Reliance on vascular endothelial growth factor (VEGF) therapy to improve perfusion makes logical sense, yet clinical study outcomes on rescuing diabetic wound vascularization have yielded disappointing results. Our previous work has identified that low endothelial phospholipase Cγ2 (PLCγ2) expression hinders the therapeutic effect of VEGF on the diabetic ischemic limb.

View Article and Find Full Text PDF

Neovascular age-related macular degeneration and diabetic macular edema are leading causes of vision-loss evoked by retinal neovascularization and vascular leakage. The glycoprotein microfibrillar-associated protein 4 (MFAP4) is an integrin αβ ligand present in the extracellular matrix. Single-cell transcriptomics reveal MFAP4 expression in cell-types in close proximity to vascular endothelial cells including choroidal vascular mural cells and retinal astrocytes and Müller cells.

View Article and Find Full Text PDF

The homeotic transformation of stamens into pistil-like structures (pistillody) causes cytoplasmic male sterility (CMS). This phenomenon is widely present in plants, and might be induced by intracellular communication (mitochondrial retrograde signaling), but its systemic regulating mechanism is still unclear. In this study, morphological observation showed that the stamens transformed into pistil-like structures, leading to flat and dehiscent pistils, and fruit set decrease in sua-CMS (MS K326, somatic fusion between Nicotiana.

View Article and Find Full Text PDF

Background: Endocrine-disrupting chemicals (EDCs) interfere with the endocrine system and negatively impact reproductive health. Biochanin A (BCA), an isoflavone with anti-inflammatory and estrogen-like properties, has been identified as one such EDC. This study investigates the effects of BCA on transcription, metabolism, and hormone regulation in primary human granulosa cells (GCs), with a specific focus on the activation of bitter taste receptors (TAS2Rs).

View Article and Find Full Text PDF

Background: Bear bile powder (BBP), a unique animal-derived medicine with anti-inflammatory and antioxidant effects, is used in Shexiang Tongxin dropping pills (STDP), which is applied to treat cardiovascular diseases, including acute myocardial infarction (AMI). The efficacy and compatibility mechanisms of action of BBP in STDP against cardiovascular diseases remain unclear. This study aimed to investigate the compatibility effects of BBP in STDP in rats with AMI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!