Croton zehntneri is a plant known as canelinha de cunhã, prevalent in the northeast region of Brazil. Many constituents of the vegetable have already been studied, and their pharmacological properties have been proven, but this is the first study to analyze the antinociceptive effect in adult zebrafish (ZFa) of the triterpene acetyl aleuritolic acid (AAA) isolated from the stem bark. The animals (ZFa; n = 6/group) were treated intraperitoneally (ip; 20 μL) with AAA (0.1 or 0.3 or 1.0 mg/mL) or vehicle (0.9% saline; 20 μL), and submitted to the locomotor activity test, as well as 96 h acute toxicity. Other groups (n = 6/each) received the same treatments and underwent acute nociception tests (formalin, cinnamaldehyde, glutamate, acid saline, capsaicin, and hypertonic saline). Possible neuromodulation mechanisms were evaluated. AAA (0.1 or 0.3 or 1.0 mg/mL) reduced the nociceptive behavior induced by acid saline and capsaicin, as well as inhibited corneal nociception induced by hypertonic saline, both without altering the animals' locomotor system and without toxicity. These analgesic effects of AAA were significantly (p > 0.05) similar to those of morphine, used as a positive control. The antinociceptive effect of AAA was inhibited by methylene blue, ketamine, camphor, ruthenium red, amiloride, and mefenamic acid. The antinociceptive effect of AAA on the cornea of animals was inhibited by capsazepine. Therefore, AAA showed pharmacological potential for the treatment of acute pain, and this effect is modulated by cGMP, NMDA receptors, transient receptor potential channels (TRPs), ASICs and has pharmacological potential for the treatment of corneal pain modulated by the TRPV1 channel.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.bbrc.2020.11.056DOI Listing

Publication Analysis

Top Keywords

triterpene acetyl
8
acetyl aleuritolic
8
aleuritolic acid
8
croton zehntneri
8
adult zebrafish
8
aaa 10 mg/ml
8
acid saline
8
saline capsaicin
8
hypertonic saline
8
antinociceptive aaa
8

Similar Publications

Effects of 1-1,2,3-Triazole Derivatives of 3--Acetyl-11-Keto-Beta-Boswellic Acid from Resin on T-Cell Proliferation and Activation.

Pharmaceuticals (Basel)

December 2024

Department of Biosciences and Bioinformatics and Suzhou Municipal Key Laboratory of Biomedical Sciences and Translational Immunology, School of Science, Xi'an Jiaotong-Liverpool University, Suzhou 215123, China.

3--acetyl-11-keto--boswellic acid (-AKBA), a triterpene natural product, is one of the main natural products of resin (BSR) and has reported biological and immunomodulatory effects. 1-1,2,3-triazole derivatives of -AKBA (named -) were synthesized from -AKBA. The 1-1,2,3-triazole compounds are also known to have a wide range of biological and pharmacological properties as demonstrated by in vitro and in vivo studies.

View Article and Find Full Text PDF

Bis-Iridoid Glycosides and Triterpenoids from and Their Potential as Inhibitors of ACC1 and ACL.

Molecules

December 2024

Zhejiang Provincial Key Laboratory of Plant Evolutionary Ecology and Conservation, School of Pharmaceutical Sciences, Taizhou University, Taizhou 318000, China.

A comprehensive phytochemical investigation of the twigs/leaves and flower buds of , a rare deciduous shrub native to China, led to the isolation of 39 structurally diverse compounds. These compounds include 11 iridoid glycosides (- and -), 20 triterpenoids (, , and -), and 8 phenylpropanoids (-). Among these, amabiliosides A () and B () represent previously undescribed bis-iridoid glycosides, while amabiliosides C () and D () feature a unique bis-iridoid-monoterpenoid indole alkaloid scaffold with a tetrahydro--carboline-5-carboxylic acid moiety.

View Article and Find Full Text PDF

This study investigated the mechanism by which ginsenoside Rg_(1 )attenuates hypoxia/reoxygenation(H/R) injury in HL-1 cardiomyocytes by inhibiting the acetylation of ATP synthase subunit alpha(ATP5A1) through silent information regulator 3(SIRT3). In this study, an H/R injury model was constructed by hypoxia for 6 h and reoxygenation for 2 h in HL-1 cardiomyocytes. First, the optimal effective concentration of ginsenoside Rg_1 was determined using a cell viability assay kit.

View Article and Find Full Text PDF

Injectable Nano-Micron AKBA Delivery Platform for Treatment of Tendinopathy in a Rat Model.

J Biomed Mater Res A

January 2025

Department of Orthopedics, The Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou Municipal Hospital, Gusu School, Nanjing Medical University, Suzhou, P. R. China.

Tendinopathy is a disorder characterized by pain and reduced function due to a series of changes in injured or diseased tendons. Inflammation and collagen degeneration are key contributors to the onset and chronic nature of tendinopathy. Acetyl-11-keto-β-boswellic acid (AKBA) is an effective anti-inflammatory agent widely used in chronic inflammatory disorders and holds potential for tendinopathy treatment; however, its therapeutic efficacy is limited by poor aqueous solubility.

View Article and Find Full Text PDF

Existing Forms of Notoginsenoside R in Rats and Their Potential Bioactivities.

J Agric Food Chem

December 2024

State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing 100191, China.

Article Synopsis
  • - Notoginsenoside R (NG-R), a key saponin in a medicinal plant, was analyzed using advanced UHPLC-ESI-Q-TOF-MS/MS techniques to identify its various forms and distribution in rats, resulting in the detection of 105 metabolites, including 89 new ones.
  • - The study proposed a new fragmentation pathway for protopanaxatriol (PPT) and revealed novel metabolic reactions for NG-R, such as polyhydroxylation and glucuronidation, with significant metabolite accumulation observed in various organs.
  • - Predictive analyses suggested 48 metabolites may have therapeutic effects on three diseases, with follow-up experiments confirming anti-tumor and anti-inflammatory properties in eight specific
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!