Mechanical properties and microstructural modifications of vessel tissues are strongly linked, as established in the state of the art of cardiovascular diseases. Techniques to obtain both mechanical and structural information are reported, but the possibility to obtain real-time microstructural and macrostructural data correlated is still lacking. An experimental approach to characterize the aortic tissue is presented. A setup integrating biaxial traction and Small Angle Light Scattering (SALS) analysis is described. The system was adopted to test ex-vivo aorta specimens from healthy and aneusymatic (aTAA) cases. A significant variation of the fiber dispersion with respect to the unloaded state was encountered during the material traction. The corresponding microstructural and mechanical data were successfully used to fit a given anisotropic constitutive model, with satisfactory R values (0.97±0.11 and 0.96±0.17, for aTAA and healthy population, respectively) and fiber dispersion parameters variations between the aTAA and healthy populations (0.39±0.23 and 0.15±0.10). The method integrating the biaxial/SALS technique was validated, allowing for real-time synchronization between mechanical and microstructural analysis of anisotropic biological tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.medengphy.2020.10.012DOI Listing

Publication Analysis

Top Keywords

fiber dispersion
8
ataa healthy
8
correlation micro
4
micro macrostructural
4
macrostructural biaxial
4
biaxial behavior
4
behavior ascending
4
ascending thoracic
4
thoracic aneurysm
4
aneurysm novel
4

Similar Publications

Cigarette filter microplastics are composed of cellulose acetate that does not undergo biological or photo-degradation. These microplastics are readily dispersed and can be found abundantly in water, soil, and air. These fibers possess high absorption capabilities, allowing them to collect and retain pollutants such as toxic elements.

View Article and Find Full Text PDF

Lignosulfonate as a versatile regulator for the mediated synthesis of Ag@AgCl nanocubes.

Nanoscale

January 2025

State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin Key Laboratory of Pulp and Paper, China Light Industry Key Laboratory of Papermaking and Biorefinery, Tianjin University of Science and Technology, No. 29, 13th Street, TEDA, Tianjin 300457, P. R. China.

The remarkable catalytic activity, optical properties, and electrochemical behavior of nanomaterials based on noble metals (NM) are profoundly influenced by their physical characteristics, including particle size, morphology, and crystal structure. Effective regulation of these parameters necessitates a refined methodology. Lignin, a natural aromatic compound abundant in hydroxyl, carbonyl, carboxyl, and sulfonic acid groups, has emerged as an eco-friendly surfactant, reducing agent, and dispersant, offering the potential to precisely control the particle size and morphology of NM-based nanomaterials.

View Article and Find Full Text PDF

Bermuda grass (Cynodon dactylon) is a tropical grass found in all tropical and subtropical areas. It is widely found in Bangladesh and well known for its antimicrobial properties. Cotton gauze is a woven cloth which is used for wound dressing and wound cushioning.

View Article and Find Full Text PDF

A Regiospecific Co-Assembly Method to Functionalize Ordered Mesoporous Metal Oxides with Customizable Noble Metal Nanocrystals.

ACS Cent Sci

December 2024

Department of Chemistry, Shanghai Stomatological Hospital & School of Stomatology, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Fudan University, Shanghai 200433, P. R. China.

An efficient regiospecific co-assembly (RSCA) strategy is developed for general synthesis of mesoporous metal oxides with pore walls precisely decorated by highly dispersed noble metal nanocrystals with customized parameters (diameter and composition). It features the rational utilization of the specific interactions between hydrophilic molecular precursors, hydrophobic noble metal nanocrystals, and amphiphilic block copolymers, to achieve regiospecific co-assembly as confirmed by molecular dynamics simulations. Through this RSCA strategy, we achieved a controllable synthesis of a variety of functional mesoporous metal oxide composites (e.

View Article and Find Full Text PDF
Article Synopsis
  • A new method was developed to create multifunctional cellulose fabric that combines antibacterial properties with improved dyeability.
  • The process involved reacting epoxidized soybean oil with cellulose and polyhexamethylene guanidine hydrochloride under alkaline conditions to introduce both hydrophobic and cationic characteristics.
  • The modified cotton showed impressive dye performance without salt, high colorfastness, and adjustable levels of hydrophilicity and hydrophobicity, all achieved through a simple and eco-friendly chemical modification method.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!