Background: Increasing evidence suggested that microRNA and kinesin superfamily proteins play an essential role in ovarian cancer. The association between KIF4A and ovarian cancer (OC) was investigated in this study.
Methods: We performed bioinformatics analysis in the GEO database to screen out the differentially expressed miRNAs (DEmiRNAs) associated with ovarian cancer prognosis. Upstream targeting prediction for KIF4A was acquired by using the mirDIP database. The potential regulatory factor miR-29c-3p for KIF4A was obtained from the intersection of the above all miRNAs. The prognosis of KIF4A and target-miRNA in OC was obtained in the subsequent analysis. qRT-PCR and Western blot detected KIF4A expression level in IOSE80 (human normal ovarian epithelial cell line). In the meantime, the gene expression level was detected in A2780, HO-8910PM, COC1, and SKOV3 cell lines (human ovarian carcinoma cell line). MTT and colony formation assays were used to detect cell proliferation of SKOV3 cell line. The following assays detected cell migration through the use of transwell and wound heal assays. Targeted binding relationship between KIF4A and miRNA was detected by using the dual-luciferase reporter assay.
Results: Both high expression of KIF4A and lower expression of miR-29c-3p could be used as biomarkers indicating poor prognosis in OC patients. Cellular function tests confirmed that when KIF4A was silenced, it inhibited the proliferation and migration of OC cells. In addition, 3'-UTR of KIF4A had a direct binding site with miR-29c-3p, which indicated that the expression of KIF4A could be regulated by miR-29c-3p. In subsequent assays, the proliferation and migration of OC cells were inhibited by the overexpression of miR-29c-3p. At the same time, rescue experiments also confirmed that the promotion of KIF4A could be reversed by miR-29c-3p.
Conclusion: In a word, our data revealed a new mechanism for the role of KIF4A in the occurrence and development of OC.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7709319 | PMC |
http://dx.doi.org/10.1186/s12957-020-02088-z | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!