The infrared pulses used to generate nonlinear signals from a vibrational probe can cause heating via solvent absorption. Solvent absorption followed by rapid vibrational relaxation produces unwanted heat signals by creating spectral shifts of the solvent and probe absorptions. The signals are often isolated by "chopping," i.e., alternately blocking one of the incident pulses. This method is standard in pump-probe transient absorption experiments. As less heat is deposited into the sample when an incident pulse is blocked, the heat-induced spectral shifts give rise to artificial signals. Here, we demonstrate a new method that eliminates heat induced signals using pulse shaping to control pulse spectra. This method is useful if the absorption spectrum of the vibrational probe is narrow compared to the laser bandwidth. By using a pulse shaper to selectively eliminate only frequencies of light resonant with the probe absorption during the "off" shot, part of the pulse energy, and the resulting heat, is delivered to the solvent without generating the nonlinear signal. This partial heating reduces the difference heat signal between the on and off shots. The remaining solvent heat signal can be eliminated by reducing the wings of the on shot spectrum while still resonantly exciting the probe; the heat deposition from the on shot can be matched with that from the off shot, eliminating the solvent heat contribution to the signal. Modification of the pulse sequence makes it possible to measure only the heat signal, permitting the kinetics of heating to be studied.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0031581 | DOI Listing |
Proc Natl Acad Sci U S A
January 2025
Department of Physiology and Biophysical Sciences, State University of New York at Buffalo, Buffalo, NY 14214.
Ion channels are generally allosteric proteins, involving specialized stimulus sensor domains conformationally linked to the gate to drive channel opening. Temperature receptors are a group of ion channels from the transient receptor potential family. They exhibit an unprecedentedly strong temperature dependence and are responsible for temperature sensing in mammals.
View Article and Find Full Text PDFNanomaterials (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Beijing University of Technology, Beijing 100124, China.
This paper investigates the thermal effects in fused-tapered passive optical fibers under near-infrared absorption. The thermal effect is primarily caused by impurities, such as OH-, which absorb incident light and generate heat. Using the finite element method, the volume changes during fiber tapering were simulated, influencing power density and thermal distribution.
View Article and Find Full Text PDFObjectives: To explore the medication rules of traditional Chinese medicine (TCM) and mechanism of action of hub herb pairs for treating insomnia.
Methods: Totally 104 prescriptions were statistically analyzed. The association rule algorithm was applied to mine the hub herb pairs.
Clin Cancer Res
January 2025
Institute of Cancer Research, Sutton, Surrey, United Kingdom.
Purpose: Advanced prostate cancer (PCa) is invariably fatal with the androgen receptor (AR) being a major therapeutic target. AR signaling inhibitors have improved overall survival for men with advanced PCa, but treatment resistance is inevitable and includes reactivation of AR signaling. Novel therapeutic approaches targeting these mechanisms to block tumor growth is an urgent unmet clinical need.
View Article and Find Full Text PDFAdv Rheumatol
January 2025
Department of Ophthalmology, Otolaryngology, Head and Neck Surgery, Ribeirão Preto Medical School, University of São Paulo, São Paulo, Brazil.
Background: Endoplasmic reticulum stress (ERS) and the unfolded protein response (UPR) are adaptive mechanisms for conditions of high protein demand, marked by an accumulation of misfolded proteins in the endoplasmic reticulum (ER). Rheumatic autoimmune diseases (RAD) are known to be associated with chronic inflammation and an ERS state. However, the activation of UPR signaling pathways is not completely understood in Sjögren's disease (SD).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!