Wide spectral range ultrafast pump-probe magneto-optical spectrometer at low temperature, high-magnetic and electric fields.

Rev Sci Instrum

Experimentelle Physik VI, TU Dortmund, Otto-Hahn-Straße 4, 44227 Dortmund, Germany.

Published: November 2020

We developed a table-top setup to perform magneto-optical pump-probe measurements with the possibility to independently tune the photon-energy of both pump and probe beams in the 0.5 eV-3.5 eV range. Our apparatus relies on a commercial turn-key amplified laser system, able to generate light pulses with duration shorter than or comparable to 100 fs throughout the whole spectral range. The repetition rate of the source can be modified via the computer in the 1 kHz to 1 MHz range. A commercial balanced detector is connected to a high-frequency digitizer, allowing for a highly-sensitive detection scheme: rotations of the probe polarization as small as 70 μdeg can be measured. Additionally, a DC magnetic field as high as 9 T and voltages in the kV regime can be applied on the sample. A cryostat allows us to precisely set the temperature of the specimen in the 4 K-420 K interval. We prove the performance of our setup by measuring the ultrafast demagnetization of a cobalt crystal as a function of a wide variety of experimental parameters.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0024449DOI Listing

Publication Analysis

Top Keywords

spectral range
8
wide spectral
4
range
4
range ultrafast
4
ultrafast pump-probe
4
pump-probe magneto-optical
4
magneto-optical spectrometer
4
spectrometer low
4
low temperature
4
temperature high-magnetic
4

Similar Publications

Modification of silica interfaces by covalent attachment of functional ligands is a primary means of controlling the interfacial chemistry of porous silicas used in separations, environmental cleanup, and biosensing. Recently, modification of hydrophobic, -alkyl-silane-functionalized interfaces has been achieved through self-assembly of zwitterionic phospholipids or mixed-charged surfactants to form "hybrid bilayers", producing interfaces that mimic lipid-bilayer partitioning and provide shape-selective partitioning of aromatic hydrocarbons. Charged headgroups, however, introduce electrostatic interactions that strongly influence the retention of ionizable solutes and require careful control over pH and ionic strength in the solution phase.

View Article and Find Full Text PDF

Extensive research on retinal layer segmentation (RLS) using deep learning (DL) is mostly approaching a performance plateau, primarily due to reliance on structural information alone. To address the present situation, we conduct the first study on the impact of multi-spectral information (MSI) on RLS. Our experimental results show that incorporating MSI significantly improves segmentation accuracy for retinal layer optical coherence tomography (OCT) images.

View Article and Find Full Text PDF

Rice (Oryza sativa) is a vital food crop and staple diet for most of the world's population. Poor dietary choices have had a significant role in the development of type-2 diabetes in the population that relies on rice and rice-starch-based foods. Hence, our study investigated the in vitro digestion and glycemic indices of certain indigenous rice cultivars and the factors influencing these indices.

View Article and Find Full Text PDF

While soundscapes shape the structure and function of auditory systems over evolutionary timescales, there is limited information regarding the adaptation of wild fish populations to their natural acoustic environments. This is particularly relevant for freshwater ecosystems, which are extremely diverse and face escalating pressures from human activities and associated noise pollution. The Siamese fighting fish is one of the most important cultured species in the global ornamental fish market and is increasingly recognized as a model organism for genetics and behavioural studies.

View Article and Find Full Text PDF

The health of poultry flock is crucial in sustainable farming. Recent advances in machine learning and speech analysis have opened up opportunities for real-time monitoring of the behavior and health of flock. However, there has been little research on using Tiny Machine Learning (Tiny ML) for continuous vocalization monitoring in poultry.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!