A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

The Macquarie Deformation-DIA facility at the Australian Synchrotron: A tool for high-pressure, high-temperature experiments with synchrotron radiation. | LitMetric

The Macquarie University Deformation-DIA (MQ D-DIA) multi-anvil apparatus at the Australian Synchrotron provides a new experimental facility that enables simultaneous high-pressure and high-temperature in situ synchrotron experimentation in Australia. The MQ D-DIA can be easily deployed at any of a number of beamlines at the Australian Synchrotron, and we describe its installation at the x-ray absorption spectroscopy beamline, which enables in situ x-ray absorption near-edge spectroscopy and energy-scanning x-ray diffraction. A simple, reliable, and x-ray transparent high-pressure cell assembly has been developed for the D-DIA for which load/pressure and heater power/temperature relationships have been calibrated using in situ x-ray diffraction and "offline" mineral equilibration experiments. Additionally, we have mapped temperature distribution within the assembly using a new quantitative electron microprobe mapping technique developed for fine-grained polyphase samples. We are now investigating the speciation of geologically important trace elements in silicate melts (e.g., Zr, U, and Th) measured in situ under high pressure and temperature conditions corresponding to the Earth's mantle. Pressure-dependent changes in speciation influence partitioning behavior, and therefore the distribution in the Earth, of many trace elements. However, previous ex situ investigations are hampered by uncertainty as to whether high-pressure speciation can be faithfully recorded in samples recovered to ambient conditions. We present preliminary results showing an increase in the coordination number of Zr dissolved as a trace component of a sodium-rich silicate melt with pressure. These results also indicate that silicate melt composition exerts a strong influence on Zr speciation.

Download full-text PDF

Source
http://dx.doi.org/10.1063/5.0022849DOI Listing

Publication Analysis

Top Keywords

australian synchrotron
12
high-pressure high-temperature
8
x-ray absorption
8
situ x-ray
8
x-ray diffraction
8
trace elements
8
silicate melt
8
synchrotron
5
situ
5
x-ray
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!