A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Two-component versus three-component metasolids. | LitMetric

Two-component versus three-component metasolids.

J Acoust Soc Am

MSME, Univ Gustave Eiffel, CNRS UMR 8208, Univ Paris-Est Créteil, F-77454 Marne-la-Vallée, France.

Published: November 2020

Analytic analysis and parametric investigation are employed to study and compare metamaterial properties of two types of composite metasolids. Metasolids are composed of either an elastic inclusion or a rigid core coated by an elastic material, embedded in a stiff matrix. For these types of materials, results related to cylindrical as well as spherical inclusions are presented. Such mono-inclusion two-component and bi-inclusion three-component metasolids have been previously known to exhibit negative mass density near local-resonance frequencies. Through a unified formulation, it is analytically shown how and why adding a rigid mass inside the elastic inclusion to make a bi-inclusion three-component material can dramatically change the homogenized property of the resultant inclusion and increase the tunability of the composite, particularly in terms of local-resonance frequencies and the associated metamaterial-effect frequency bandwidth. In this way, concerning distinctly sound and vibration insulation, a low-frequency metamaterial effect with larger bandwidth can be designed via an inverse problem using a simplified mass-spring model.

Download full-text PDF

Source
http://dx.doi.org/10.1121/10.0002424DOI Listing

Publication Analysis

Top Keywords

three-component metasolids
8
elastic inclusion
8
bi-inclusion three-component
8
local-resonance frequencies
8
two-component versus
4
versus three-component
4
metasolids
4
metasolids analytic
4
analytic analysis
4
analysis parametric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!