Offshore wind turbines are increasingly abundant sources of underwater low frequency noise. This increase raises concern for the cumulative contribution of wind farms to the underwater soundscape and possible impact on marine ecosystems. Here, available measurements of underwater noise from different wind turbines during operation are reviewed to show that source levels are at least 10-20 dB lower than ship noise in the same frequency range. The most important factor explaining the measured sound pressure levels from wind turbines is distance to the turbines with smaller effects of wind speed and turbine size. A simple multi-turbine model demonstrates that cumulative noise levels could be elevated up to a few kilometres from a wind farm under very low ambient noise conditions. In contrast, the noise is well below ambient levels unless it is very close to the individual turbines in locations with high ambient noise from shipping or high wind speeds. The rapid increase in the number and size of offshore wind farms means that the cumulative contribution from the many turbines may be considerable and should be included in assessments for maritime spatial planning purposes as well and environmental impact assessments of individual projects.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1121/10.0002453 | DOI Listing |
Proc Natl Acad Sci U S A
February 2025
Department of Construction Sciences, Lund University, Lund SE-22100, Sweden.
Preemptive identification of potential failure under loading of engineering structures is a critical challenge. Our study presents an innovative approach to design built-in prefailure indicators within multiscale structural designs with optimized load carrying capabilities utilizing the design freedom of topology optimization. The indicators are engineered to visibly signal load conditions approaching the global critical buckling load at predefined locations.
View Article and Find Full Text PDFMar Pollut Bull
January 2025
Institute for the study of anthropogenic impacts and sustainability in the marine environment, National Research Council of Italy, Via del Mare 3, 91021 Torretta Granitola, Italy.
The Strait of Sicily, a vital marine passage with diverse fauna, is seeing a steep rise in the planning of offshore wind farm projects. This study assesses the acoustic impact of these wind farms on local marine species. Underwater propagation was modeled for three proposed floating wind farms using JASCO's Marine Operations Noise Model (MONM), which integrates a parabolic equation method for frequencies from 10 to 800 Hz and a beam-tracing model for 1 to 25 kHz.
View Article and Find Full Text PDFBiol Aujourdhui
January 2025
UMR CNRS-UniCaen-MNHN-SU-UA-IRD BOREA, Biologie des Organismes et des Écosystèmes Aquatiques, Université de Caen-Normandie, CS 14032, 14000 Caen, France - France Énergies Marines, 53 rue de Prony, 76600 Le Havre, France.
In the anthropocene era, one of the greatest challenges facing trophic modeling applied to the marine environment is its ability to couple the multiple effects of both climate change and local anthropogenic activities, notably the development of offshore wind farms. The major challenge is to create scenarios to characterize their cumulative effects on the functioning of the entire socio-ecological system, in order to propose appropriate management plans. Although modeling cumulative impact on socio-ecological networks is not yet widely used, data reported in the present review article show that the relevance of this approach could be established in the context of offshore wind power.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Hainan Institute, Zhejiang University, Sanya 572024, China.
In recent decades, Offshore Wind Turbines (OWTs) have become crucial to the clean energy transition, yet they face significant safety challenges due to harsh marine conditions. Key issues include blade damage, material corrosion, and structural degradation, necessitating advanced materials and real-time monitoring systems for enhanced reliability. Carbon fiber has emerged as a preferred material for turbine blades due to its strength-to-weight ratio, although its high cost remains a barrier.
View Article and Find Full Text PDFJ Acoust Soc Am
January 2025
Leibniz University Hannover, Institute of Structural Analysis, Appelstrasse 9a, 30167 Hannover, Germany.
Pile driving for offshore wind turbines typically generates high sound levels in the water column. Bubble curtains are frequently employed to protect marine fauna. This study aims to investigate the effect of a bubble curtain on the generated sound wave field.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!