We provide an overview of the Koopman-operator analysis for a class of partial differential equations describing relaxation of the field variable to a stable stationary state. We introduce Koopman eigenfunctionals of the system and use the notion of conjugacy to develop spectral expansion of the Koopman operator. For linear systems such as the diffusion equation, the Koopman eigenfunctionals can be expressed as linear functionals of the field variable. The notion of inertial manifolds is shown to correspond to joint zero level sets of Koopman eigenfunctionals, and the notion of isostables is defined as the level sets of the slowest decaying Koopman eigenfunctional. Linear diffusion equation, nonlinear Burgers equation, and nonlinear phase-diffusion equation are analyzed as examples.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1063/5.0011470 | DOI Listing |
Chaos
November 2020
Department of Mechanical Engineering and Mathematics, University of California, Santa Barbara, California 93106, USA.
We provide an overview of the Koopman-operator analysis for a class of partial differential equations describing relaxation of the field variable to a stable stationary state. We introduce Koopman eigenfunctionals of the system and use the notion of conjugacy to develop spectral expansion of the Koopman operator. For linear systems such as the diffusion equation, the Koopman eigenfunctionals can be expressed as linear functionals of the field variable.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!