Downy mildew (DM) is one of the most serious diseases in cucumber. Multiple quantitative trait loci (QTLs) for DM resistance have been detected in a limited number of cucumber accessions. In this study we applied genome-wide association analysis (GWAS) to detected genetic loci for DM resistance in a core germplasm (CG) of cucumber lines that represent diverse origins and ecotypes. Phenotypic data on responses to DM infection were collected in four field trials across three years, 2014, 2015, and 2016. With the resequencing data of these CG lines, GWAS for DM resistance was performed and detected 18 loci that were distributed on all the seven cucumber chromosomes. Of these 18 loci, only six (, and ) were detected in two experiments, and were considered as loci with a stable effect on DM resistance. Further, 16 out of the 18 loci colocalized with the QTLs that were reported in previous studies and two loci, and , were novel ones identified only in this study. Based on the annotation of homologous genes in and pairwise LD correlation analysis, several candidate genes were identified as potential causal genes underlying the stable and novel loci, including for , for , for , for , and for . This study shows that the CG germplasm is a very valuable resource carrying known and novel QTLs for DM resistance. The potential of using these CG lines for future allele-mining of candidate genes was discussed in the context of breeding cucumber with resistance to DM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7768435 | PMC |
http://dx.doi.org/10.3390/plants9121659 | DOI Listing |
Braz J Psychiatry
January 2025
Research Center in Spirituality and Health (NUPES), School of Medicine, Federal University of Juiz de Fora (UFJF), Juiz de Fora, MG, Brazil.
Objective: There has been a call for neuroscientific studies of spiritual experiences due to their global prevalence, significant impact, and importance for understanding the mind-brain problem. Mediumship is a spiritual experience where individuals claim to communicate with or be influenced by deceased persons or non-material entities. We assessed whether mediums possess specific genetic alterations.
View Article and Find Full Text PDFFASEB J
January 2025
State Key Laboratory of Swine and Poultry Breeding Industry, Sichuan Agricultural University, Chengdu, China.
Triglyceride (TG) metabolism is a complex and highly coordinated biological process regulated by a series of genes, and its dysregulation can lead to the occurrence of disorders in lipid metabolism. However, the transcriptional regulatory mechanisms of crucial genes in TG metabolism mediated by enhancer-promoter interactions remain elusive. Here, we identified candidate enhancers regulating the Agpat2, Dgat1, Dgat2, Pnpla2, and Lipe genes in 3T3-L1 adipocytes by integrating epigenomic data (H3K27ac, H3K4me1, and DHS-seq) with chromatin three-dimensional interaction data.
View Article and Find Full Text PDFPlanta
January 2025
Department of Plant Sciences, University of the Free State, Bloemfontein, South Africa.
Sorghum kernel composition is a crucial characteristic that determines its functional qualities. The total protein content of sorghum grain increases under drought stress, but starch, protein digestibility, and micronutrient contents decrease. Sorghum (Sorghum bicolor L.
View Article and Find Full Text PDFMol Biol Rep
January 2025
Division of Animal Genetics, ICAR-Indian Veterinary Research Institute (ICAR-IVRI), Izatnagar, Bareilly 243 122, Uttar Pradesh, India.
Background: Litter size in mice is an important fitness and economic feature that is controlled by several genes and influenced by non-genetic factors too. High positive selection pressure in each generation for Litter size at birth (LSB), resulted in the development of high and low prolific lines of inbred Swiss albino mice (SAM). Despite uniform management conditions, these lines showed variability in LSB across the generation.
View Article and Find Full Text PDFmSystems
January 2025
Key Laboratory of Pig Genetic Resources Evaluation and Utilization (Nanjing), Ministry of Agriculture and Rural Affairs, Institute of Swine Science, College of Animal Science and Technology, Nanjing Agricultural University, Nanjing, China.
Unlabelled: Although metagenomic investigations into microbial fiber-degrading capabilities are currently prevalent, there is a notable gap in research concerning the regulatory mechanisms underpinning host-microbiota interactions that confer tolerance to high-fiber diets in pigs. In this study, 28 Meishan (MS) and 28 Large White (LW) pigs were subjected to feeding experiments involving various fiber levels. Subsequently, multi-omics was employed to investigate the influence of host-microbiota interactions on the fiber degradation of pigs.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!