AI Article Synopsis

  • Stereotactic body radiotherapy (SBRT) provides high doses of radiation to vertebral metastases while protecting the spinal cord, and a new method using anti-CEA PET imaging enhances target volume determination for patients with metastatic breast or thyroid cancer.
  • In a study involving eight patients, iPET was performed alongside MRI and PET-CT scans, identifying more vertebral lesions than traditional methods and affecting clinical target volume (CTV) delineation in 70% of cases.
  • The findings suggest that iPET improves mapping of affected vertebral segments, offering valuable additional information for planning effective SBRT treatments in cases of metastatic vertebral disease.

Article Abstract

(1) Background: Stereotactic body radiotherapy (SBRT) for vertebral metastases (VM) allows the delivery of high radiation doses to tumors while sparing the spinal cord. We report a new approach to clinical target volume (CTV) delineation based on anti-carcinoembryonic antigen (CEA) positron emission tomography (pretargeted immuno-PET; "iPET") in patients with metastatic breast cancer (BC) or medullary thyroid cancer (MTC). (2) Methods: All patients underwent iPET, spine magnetic resonance imaging (MRI), and positron emission tomography-computed tomography (PET-CT) using F-deoxyglucose (FDG) for BC or F-dihydroxy-phenylalanine (F-DOPA) for MTC. Vertebrae locations and vertebral segments of lesions were recorded and the impact on CTV delineation was evaluated. (3) Results: Forty-six VM eligible for SBRT following iPET were evaluated in eight patients (five BC, three MTC). Eighty-one vertebral segments were detected using MRI, 26 with FDG or F-DOPA PET/CT, and 70 using iPET. iPET was able to detect more lesions than MRI for vertebral bodies (44 vs. 34). iPET-based delineation modified MRI-based CTV in 70% (32/46) of cases. (4) Conclusion: iPET allows a precise mapping of affected VM segments, and adds complementary information to MRI in the definition of candidate volumes for VM SBRT. iPET may facilitate determining target volumes for treatment with stereotactic body radiotherapy in metastatic vertebral disease.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7760481PMC
http://dx.doi.org/10.3390/biomedicines8120548DOI Listing

Publication Analysis

Top Keywords

stereotactic body
12
body radiotherapy
12
vertebral metastases
8
ctv delineation
8
positron emission
8
vertebral segments
8
sbrt ipet
8
vertebral
6
ipet
6
targeting stereotactic
4

Similar Publications

This study aimed to identify radiotherapy dosimetric parameters related to local failure (LF)-free survival (LFFS) in patients with lung and liver oligometastases from colorectal cancer treated with stereotactic body radiotherapy (SBRT). We analyzed 75 oligometastatic lesions in 55 patients treated with SBRT between January 2014 and December 2021. There was no constraint or intentional increase in maximum dose.

View Article and Find Full Text PDF

Background And Purpose: The aim was to estimate the cost of the external beam radiotherapy (EBRT) in public health care centers in Catalonia (Spain), according to the ESTRO-HERO costing model for 2018.

Materials And Methods: Personnel, equipment, and activity data from 2018 from the 11 RT centers were used, incorporating European mean values adapted to the Catalan context. Secondly, EBRT costs were estimated, incorporating 2023 fractionation technique and scheme usage percentages.

View Article and Find Full Text PDF

Reinforcing treatment and evaluation workflow of stereotactic ablative body radiotherapy for refractory ventricular tachycardia.

Radiat Oncol J

December 2024

Department of Radiation Oncology, Yonsei Cancer Center, Heavy Ion Therapy Research Institute, Yonsei University College of Medicine, Seoul, Republic of Korea.

Purpose: Cardiac radioablation is a novel, non-invasive treatment for ventricular tachycardia (VT), involving a single fractional stereotactic ablative body radiotherapy (SABR) session with a prescribed dose of 25 Gy. This complex procedure requires a detailed workflow and stringent dose constraints compared to conventional radiation therapy. This study aims to establish a consistent institutional workflow for single-fraction cardiac VT-SABR, emphasizing robust plan evaluation and quality assurance.

View Article and Find Full Text PDF

In this paper, we review the use of hypofractionated radiotherapy for gastrointestinal malignancies, focusing on primary and metastatic liver cancer, and recurrent rectal cancer. Technological advancements in radiotherapy have facilitated the direct delivery of high-dose radiation to tumors, while limiting normal tissue exposure, supporting the use of hypofractionation. Hypofractionated radiotherapy is particularly effective for primary and metastatic liver cancer where high-dose irradiation is crucial to achieve effective local control.

View Article and Find Full Text PDF

Body composition measurements (BCM), obtained via computed tomography (CT), have been used as predictors of survival, tumour recurrence, and post-surgical infections in human oncology. There are no reports on using BCM to predict outcomes of dogs with cancer. Elevated BCM is hypothesised to place extra stress on bones weakened by cancer.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!