The search for an ocular drug delivery system that could provide long-acting effects without a detriment to the anatomy and physiology of the eye remains a challenge. Polyphenolic compounds (curcumin in particular) have recently gained popularity due to their powerful antioxidant properties; yet curcumin suffers poor stability and water solubility. A conventional eye drop formulation of curcumin in the form of a suspension is likely to suffer a short duration of action requiring multiple instillations. On the other hand, polymeric in-situ gelling inserts offer the prospect of overcoming these limitations. The aim of this study was to prepare, characterize and evaluate in vivo, polymeric, in-situ gelling and mucoadhesive inserts for ocular surface delivery of curcumin. Different types and ratios of biocompatible polymers (HPMC, CMC, PL 127 and PVA) and three plasticizers along with the solvent casting method were adopted to prepare curcumin inserts. The inserts were investigated for their physicochemical characteristics, applicability, and suitability of use for potential placement on the ocular surface. The prepared inserts revealed that curcumin was mainly dispersed in the molecular form. Insert surfaces remained smooth and uniform without cracks appearing during preparation and thereafter. Improved mechanical and mucoadhesive properties, enhanced in vitro release (7.5- to 9-fold increases in RRT min) and transcorneal permeation (5.4- to 8.86-fold increases in Papp) of curcumin was achieved by selected in-situ gelling inserts compared to a control curcumin suspension. The developed inserts demonstrated acceptable ocular tolerability, enhanced corneal permeability, and sustained release of curcumin along with retention of insert formulation F7 on the ocular surface for at least two-hours. This insert provides a viable alternative to conventional eye drop formulations of curcumin.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7761359 | PMC |
http://dx.doi.org/10.3390/pharmaceutics12121158 | DOI Listing |
J Tissue Viability
January 2025
Department of Pharmaceutics, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1414614411, Iran. Electronic address:
Scientists investigated probiotic-containing dressings to address the challenges associated with burn injuries, namely infection and antimicrobial resistance. The present investigation sought to evaluate the impact of innovative probiotic-loaded microparticles with in situ gelling characteristics on infected burns. The strain, Lactiplantibacillus plantarum, was selected due to its demonstrated wound-healing potential.
View Article and Find Full Text PDFInt J Pharm
January 2025
Department of Chemical Sciences, Bernal Institute, University of Limerick, Ireland; SSPC Science Foundation Ireland Research Centre for Pharmaceuticals, University of Limerick, Ireland. Electronic address:
The potent pro-inflammatory cytokine, interferon gamma (IFN-γ), is an enticing therapeutic target because of its accelerator role in several acute and chronic inflammatory processes. In this work, poloxamer 407 is developed as an in-situ gelling polymer for a long-acting formulation to deliver a serine protease, C5a peptidase (ScpA) from Streptococcus pyogenes. ScpA is well known for its activity against the complement factor C5a but has also recently been shown to cleave IFN-γ in vitro into inactive fragments.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Department of Drug Sciences, University of Pavia, Via Taramelli 12, 27100 Pavia, Italy. Electronic address:
The work aims to develop mucoadhesive and thermo-responsive in situ gelling systems, using hydrophobically-modified hydroxypropyl-methyl cellulose (Sangelose, SG) and beta-cyclodextrin (β-CD) derivatives, for preventing viral respiratory infections. Eight SG/CD systems with varying CD concentrations were evaluated for rheological properties, mucoadhesiveness, spreadability and sprayability via nasal devices; cytotoxicity was in vitro investigated on reconstituted nasal epithelia. Additionally, droplet size distribution and spray deposition were assessed for the most promising systems.
View Article and Find Full Text PDFGels
January 2025
Department of Galenic Pharmacy, Faculty of Pharmacy, Comenius University Bratislava, Odbojárov 10, SK-832 32 Bratislava, Slovakia.
The study focuses on the development of an in situ gelling dexamethasone (DEX) oromucosal formulation designed for the treatment of aphthous stomatitis. Three series of formulations were prepared; a first series containing DEX suspended, a second series containing DEX and, in addition, mint essential oil (EO), and a third series containing EO and DEX solubilized in propylene glycol (PG). In the composition, polymers in the role of mucoadhesive agent were interchanged (hydroxypropyl methylcellulose (HPMC), hydroxypropyl cellulose (HPC), hydroxyethyl cellulose (HEC), methyl cellulose (MC), carboxymethyl cellulose (CMC), and sodium carboxymethyl cellulose (NaCMC).
View Article and Find Full Text PDFGels
December 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, King Saud University, Riyadh 11495, Saudi Arabia.
Itraconazole (ITZ) is a potent antifungal agent. Its oral administration is associated with systemic toxicity, and its efficacy in ocular formulations is limited. This study aims to enhance ITZ's ocular permeation and antifungal efficacy by loading it into deformable liposomes (DLs) based on Tween 80 (T) or Poloxamer 188 (P).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!